Horizontal and vertical log-concavity

被引:6
|
作者
Heim, Bernhard [1 ]
Neuhauser, Markus [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, D-52056 Aachen, Germany
[2] Kutaisi Int Univ KIU, Youth Ave,Turn 5-7, GE-4600 Kutaisi, Georgia
关键词
Binomial coefficients; Log-concavity; Polynomials; Recurrences; Special sequences;
D O I
10.1007/s40993-021-00245-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Horizontal and vertical generating functions and recursion relations have been investigated by Comtet for triangular double sequences. In this paper we investigate the horizontal and vertical log-concavity of triangular sequences assigned to polynomials which show up in combinatorics, number theory and physics. This includes Laguerre polynomials, the Pochhammer polynomials, the D'Arcais and Nekrasov-Okounkov polynomials.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Preserving log-concavity and generalized triangles
    Ahmita, Moussa
    Belbachir, Hacene
    DIOPHANTINE ANALYSIS AND RELATED FIELDS 2010, 2010, 1264 : 81 - 89
  • [32] Assessing log-concavity of multivariate densities
    Hazelton, Martin L.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (01) : 121 - 125
  • [33] LOG-CONCAVITY PROPERTIES OF MINKOWSKI VALUATIONS
    Berg, Astrid
    Parapatits, Lukas
    Schuster, Franz E.
    Weberndorfer, Manuel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (07) : 5245 - 5277
  • [34] ON THE LOG-CONCAVITY OF A JACOBI THETA FUNCTION
    Coffey, Mark W.
    Csordas, George
    MATHEMATICS OF COMPUTATION, 2013, 82 (284) : 2265 - 2272
  • [35] Log-concavity of a mixture of beta distributions
    Mu, Xiaosheng
    STATISTICS & PROBABILITY LETTERS, 2015, 99 : 125 - 130
  • [36] On relative log-concavity and stochastic comparisons
    Fang, Rui
    Ding, Weiyong
    STATISTICS & PROBABILITY LETTERS, 2018, 137 : 91 - 98
  • [37] Bell numbers, log-concavity, and log-convexity
    Asai, N
    Kubo, I
    Kuo, HH
    ACTA APPLICANDAE MATHEMATICAE, 2000, 63 (1-3) : 79 - 87
  • [38] ON THE LOG-CONCAVITY OF THE DEGENERATE BERNOULLI NUMBERS
    Luca, Florian
    Young, Paul Thomas
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (03) : 789 - 800
  • [39] PRESERVATION OF LOG-CONCAVITY UNDER CONVOLUTION
    Mao, Tiantian
    Xia, Wanwan
    Hu, Taizhong
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2018, 32 (04) : 567 - 579
  • [40] LOG-CONCAVITY AND ZEROS OF THE ALEXANDER POLYNOMIAL
    Stoimenow, Alexander
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 539 - 545