Broadband tunable terahertz metamaterial absorber based on vanadium dioxide and Fabry-Perot cavity

被引:45
|
作者
Zhang, Heng [1 ]
Ling, Fang [1 ]
Zhang, Bin [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
关键词
Metamaterial absorber; Broadband absorption; Vanadium dioxide; Fabry-Perot cavity;
D O I
10.1016/j.optmat.2021.110803
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A tunable broadband metamaterial absorber is proposed based on the vanadium dioxide and Fabry-Perot cavity in the terahertz region. To broaden the absorption bandwidth, the dielectric coating is employed on the top of vanadium dioxide squares to form the Fabry-Perot cavity for improving the impedance matching and further triggering an additional resonance frequency. The simulation results indicate that the bandwidth of absorption over 90% reaches 3.43 THz with a central frequency of 2.645 THz and the corresponding relative bandwidth is 129.7% under normal incidence. The absorption peak can be approximately tuned from 8% to 100% by changing the conductivity of vanadium dioxide. Moreover, it is polarization-insensitive, and exhibits absorption performance of working at wide-angle incidence. This design method can serve as a reference to research tunable and broadband terahertz devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Thermally tunable vanadium-dioxide-based broadband metamaterial absorber with switchable functionality in the terahertz band
    Xu, Chongyang
    Duan, Guiyuan
    Xu, Wei
    Wang, Xingzhu
    Huang, Yang
    Zhang, Xiangyang
    Zhu, Huaxin
    Wang, Ben-Xin
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2023, 5 (02):
  • [22] Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene
    Li, Jing
    Liu, Yanfei
    Chen, Yu
    Chen, Wenqing
    Guo, Honglei
    Wu, Qiannan
    Li, Mengwei
    MICROMACHINES, 2023, 14 (01)
  • [23] Tunable multiple broadband terahertz perfect absorber based on vanadium dioxide
    Zhang, Ting
    Yang, Sen
    Yu, XinYing
    OPTICS COMMUNICATIONS, 2021, 501
  • [24] Tunable multiple broadband terahertz perfect absorber based on vanadium dioxide
    Zhang, Ting
    Yang, Sen
    Yu, XinYing
    Zhang, Ting (zhangting_cai@163.com), 1600, Elsevier B.V. (501):
  • [25] Tunable Broadband Terahertz Perfect Absorber Design Based on Vanadium Dioxide
    Zhang Ting
    Yang Sen
    Yu XinYing
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (21)
  • [26] A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial
    Liu, Yongchen
    Qian, Yixian
    Hu, Fangrong
    Jiang, Mingzhu
    Zhang, Longhui
    RESULTS IN PHYSICS, 2020, 19
  • [27] Tunable bifunctional metamaterial terahertz absorber based on Dirac semimetal and vanadium dioxide
    Li, Zhaoxin
    Wang, Tongling
    Zhang, Huiyun
    Li, Dehua
    Zhang, Yuping
    SUPERLATTICES AND MICROSTRUCTURES, 2021, 155
  • [28] Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption
    Zhang, Ruoya
    Luo, Yuehao
    Xu, Jike
    Wang, Huaying
    Han, Haiyan
    Hu, Dan
    Zhu, Qiaofen
    Zhang, Yan
    OPTICS EXPRESS, 2021, 29 (26) : 42989 - 42998
  • [29] Tunable broadband terahertz absorber based on a simple design of a vanadium dioxide resonator
    Wang, Yunji
    Gu, Yao
    Liu, Fei
    Chen, Lin
    Wang, Xingchao
    Ji, Ke
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2025, 42 (03): : 309 - 314
  • [30] Tunable ultra-broadband terahertz perfect absorber based on vanadium oxide metamaterial
    Li, Yulian
    Gao, Wei
    Guo, Li
    Chen, Zihao
    Li, Changjian
    Zhang, Haiming
    Jiao, Jiajia
    An, Bowen
    OPTICS EXPRESS, 2021, 29 (25): : 41222 - 41233