Research on Intelligent Engine Fault Detection Method Based on Machine Learning

被引:0
|
作者
Yu, Hui-Yue [1 ]
Liu, Chang-Yuan [1 ]
Liu, Jin-Feng [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Harbin, Peoples R China
关键词
twin support vector machine; fault diagnosis; automobile exhaust; classifier;
D O I
10.1109/ICNISC.2018.00091
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To diagnose the engine fault quickly and effectively, we purposed a method to engine diagnosis, based on Twin Support Vector Machine. This method utilized five exhaust gas parameter values of HC, CO, CO2, O-2,NOX and normalized them. Then it took these data as feature vector for test and train in Twin Support Vector Machine classifier, so as to achieve the purpose of identifying fault categories. The experimental results shows that twin support vector machine have better effect than Neural Network or Support Vector Machine, and the training speed is faster. In the case of small sample data, the accuracy rate of fault diagnose can reach 97.6%, which can effectively describe the complex relationship between the changes of vehicle exhaust components and engine default.
引用
收藏
页码:419 / 423
页数:5
相关论文
共 50 条
  • [11] Intelligent Detection Method for Maximum Color Difference of Image Based on Machine Learning
    Wang, Jia
    Zhang, Qian
    ADVANCED HYBRID INFORMATION PROCESSING, ADHIP 2019, PT II, 2019, 302 : 171 - 180
  • [12] Intelligent Detection of High Impedance Fault using Extreme Learning Machine
    Gupta, Sunidhi
    Shihabudheen, K., V
    Anju, M.
    Kunju, Bijuna
    APPEEC 2021: 2021 13TH IEEE PES ASIA PACIFIC POWER & ENERGY ENGINEERING CONFERENCE (APPEEC), 2021,
  • [13] Intelligent energy meter fault prediction based on machine learning
    Li Helong
    Yu Haibo
    Yuan Jinshuai
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 296 - 300
  • [14] Research on Intelligent Fault Diagnosis of Engine Based on MOBP Neural Network
    Zhang, Heda
    Song, Jiantong
    Han, Jialin
    Fang, Fang
    Ren, Wanqiang
    PROCEEDINGS OF 2013 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT AUTOMATION & INTELLIGENT TECHNOLOGY AND SYSTEMS, 2013, 255 : 13 - 18
  • [15] The intelligent fault diagnosis for composite systems based on machine learning
    Wu, Li-Hua
    Jiang, Yun-Fei
    Huang, Wei
    Chen, Ai-Xiang
    Zhang, Xue-Nong
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 571 - +
  • [16] An Enhanced Unsupervised Extreme Learning Machine Based Method for the Nonlinear Fault Detection
    Shao, Lanyun
    Kang, Rongbao
    Yi, Weilin
    Zhang, Hanyuan
    IEEE ACCESS, 2021, 9 : 48884 - 48898
  • [17] Extreme learning machine based transfer learning for aero engine fault diagnosis
    Zhao, Yong-Ping
    Chen, Yao-Bin
    AEROSPACE SCIENCE AND TECHNOLOGY, 2022, 121
  • [18] Research on Network Intrusion Detection Based on Improved Machine Learning Method
    Jian, Yan
    Jian, Liang
    Dong, Xiaoyang
    International Journal of Network Security, 2022, 24 (03): : 533 - 540
  • [19] Research on Workpiece Intelligent Detection Method Based on SSD Algorithm and Transfer Learning
    Zhang, Xiaoli
    Lei, Huqiang
    Yang, Senlin
    Liu, Ling
    Shi, Zhichang
    Yang, Guangle
    INTEGRATED FERROELECTRICS, 2023, 236 (01) : 1 - 13
  • [20] Machine learning-based scheme for multi-class fault detection in turbine engine disks
    Garcia, Carla E.
    Camana, Mario R.
    Koo, Insoo
    ICT EXPRESS, 2021, 7 (01): : 15 - 22