Beyond 4D tracking: using cluster shapes for track seeding

被引:3
|
作者
Fox, P. J. [1 ]
Huang, S. [2 ,3 ]
Isaacson, J. [3 ]
Ju, X. [3 ]
Nachman, B. [3 ,4 ]
机构
[1] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
关键词
Gaseous imaging and tracking detectors; Particle tracking detectors; Particle tracking detectors (Solid-state detectors); Pattern recognition; cluster finding; calibration and fitting methods;
D O I
10.1088/1748-0221/16/05/P05001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Tracking is one of the most time consuming aspects of event reconstruction at the Large Hadron Collider (LHC) and its high-luminosity upgrade (HL-LHC). Innovative detector technologies extend tracking to four-dimensions by including timing in the pattern recognition and parameter estimation. However, present and future hardware already have additional information that is largely unused by existing track seeding algorithms. The shape of pixel-clusters provides an additional dimension for track seeding that can significantly reduce the combinatorial challenge of track finding. We use neural networks to show that cluster shapes can reduce significantly the rate of fake combinatorical backgrounds while preserving a high efficiency. We demonstrate this using the information in cluster singlets, doublets and triplets. Numerical results are presented with simulations from the TrackML challenge.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Verification of 4D Dose Delivery Using 4D Digital Human Phantom
    Zhang, F.
    Qin, Y.
    Segars, W.
    Yin, F.
    Cai, J.
    MEDICAL PHYSICS, 2012, 39 (06) : 3859 - 3859
  • [32] Hyperspace geography: Visualizing fitness landscapes beyond 4D
    Wiles, J
    Tonkes, B
    ARTIFICIAL LIFE, 2006, 12 (02) : 211 - 216
  • [33] 4D PET: Beyond Conventional Dynamic PET Imaging
    Rahmim, Arman
    Tang, Jing
    IRANIAN JOURNAL OF NUCLEAR MEDICINE, 2008, 16 (01): : 1 - 13
  • [34] A 4D diamond detector for HL-LHC and beyond
    Anderlini, L.
    Bellini, M.
    Corsi, C.
    Lagomarsino, S.
    Lucarelli, C.
    Passaleva, G.
    Sciortino, S.
    Veltri, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1040
  • [35] Tumor tracking in 4D CT images for adaptive radiotherapy
    Kronemeijer, Pieter S.
    Gavves, Efstratios
    Sonke, Jan-Jakob
    Teuwen, Jonas
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [36] Shape tracking and registration for 4D visualization of MRI and structure
    Cheng, Irene
    Nilufar, Sharmin
    Basu, Anup
    Goebel, Randy
    ADVANCES IN VISUAL COMPUTING, PT 1, 2006, 4291 : 253 - +
  • [37] Use of 4D models for tracking motion during therapy
    Keall, P
    MEDICAL PHYSICS, 2005, 32 (06) : 2127 - 2127
  • [38] Development of ultra fast silicon detector for 4D tracking
    Carnesecchi, F.
    Arcidiacono, R.
    Cardglia, N.
    Ferrero, M.
    Mandurrino, M.
    Sola, V
    Staiano, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 936 : 608 - 611
  • [39] Using the Gouy phase anomaly to localize and track bacteria in digital holographic microscopy 4D images
    Gibson, True
    Bedrossian, Manuel
    Serabyn, Eugen
    Lindensmith, Chris
    Nadeau, Jay L.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (02) : A11 - A18
  • [40] 4D Numerical Schemes for Cell Image Segmentation and Tracking
    Mikula, K.
    Peyrieras, N.
    Remesikova, M.
    Smisek, M.
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 693 - +