Differential guadrature method for solving the coupled incompressible Navier-Stokes equation and heat equation

被引:0
|
作者
Al-Saif, ASJ [1 ]
Zhu, ZY [1 ]
机构
[1] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai 200072, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coupled two-dimensional incompressible Navier-Stokes equations and heat equation are solved by DQ method using only a few grid points, in which we are able to obtain the higher accuracy steady state.
引用
收藏
页码:897 / 901
页数:5
相关论文
共 50 条
  • [31] Structure of Helicity and Global Solutions of Incompressible Navier-Stokes Equation
    Lei, Zhen
    Lin, Fang-Hua
    Zhou, Yi
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (03) : 1417 - 1430
  • [32] INCOMPRESSIBLE NAVIER-STOKES AND EULER LIMITS OF THE BOLTZMANN-EQUATION
    DEMASI, A
    ESPOSITO, R
    LEBOWITZ, JL
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) : 1189 - 1214
  • [33] Fluctuation-dissipation equation and incompressible Navier-Stokes equations
    Quastel, J
    Yau, HT
    XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 120 - 130
  • [34] Scalable domain decomposition preconditioner for Navier-Stokes equations coupled with the heat equation
    Aldbaissy, Rim
    Hecht, Frederic
    Mansour, Gihane
    Sayah, Toni
    Tournier, Pierre Henri
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (03) : 591 - 606
  • [35] The method of fundamental solutions for solving incompressible Navier-Stokes problems
    Young, D. L.
    Lin, Y. C.
    Fan, C. M.
    Chiu, C. L.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (8-9) : 1031 - 1044
  • [36] ON THE ACCURACY OF THE PSEUDOCOMPRESSIBILITY METHOD IN SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    ROGERS, SE
    KWAK, D
    KAUL, U
    APPLIED MATHEMATICAL MODELLING, 1987, 11 (01) : 35 - 44
  • [37] A new class of fractional differential hemivariational inequalities with application to an incompressible Navier-Stokes system coupled with a fractional diffusion equation
    Zeng, S. D.
    Migorski, S.
    Han, W.
    IZVESTIYA MATHEMATICS, 2023, 87 (02) : 326 - 361
  • [38] Wavelet-distributed approximating functional method for solving the Navier-Stokes equation
    Wei, GW
    Zhang, DS
    Althorpe, SC
    Kouri, DJ
    Hoffman, DK
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 115 (01) : 18 - 24
  • [39] Lattice Boltzmann Method for Two-Dimensional Incompressible Navier-Stokes Equation with CUDA
    Kosriporn, Treenath
    Suwannik, Worasait
    Maleewong, Montri
    TENCON 2014 - 2014 IEEE REGION 10 CONFERENCE, 2014,
  • [40] Time analyticity for the heat equation and Navier-Stokes equations
    Dong, Hongjie
    Zhang, Qi S.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (04)