Insight into the atomic structure of Li2MnO3 in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance

被引:64
|
作者
Song, Yuanzhe [1 ]
Zhao, Xuebing [1 ]
Wang, Chao [1 ]
Bi, Han [1 ]
Zhang, Jie [1 ]
Li, Sesi [1 ]
Wang, Min [1 ]
Che, Renchao [1 ]
机构
[1] Fudan Univ, Dept Mat Sci, Collaborat Innovat Ctr Chem Energy Mat, Lab Adv Mat, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; LOCAL-STRUCTURE; VOLTAGE; NI; DIFFRACTION; ELECTRODES; MECHANISM; STORAGE; SURFACE; DECAY;
D O I
10.1039/c7ta02151h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich Mn-based cathode materials have been considered as promising candidates for next generation Liion batteries due to their high-energy density, low cost and non-toxicity. However, the atomic arrangement of such materials and the relationship between the microstructure and electrochemical performance are still not fully understood. In this paper, local heterogeneity in the crystal lattice is directly observed in synthesized Li2MnO3/LiMO2 (M = Ni and Mn) cathode materials. With SAED application, for the first time, we accordingly uncover that the lattice heterogeneity is induced by different Li2MnO3 atomic arrangements coexisting in the same crystal domain. The co-growth of Li2MnO3 with different orientations is proved to be a defective feature, which would induce atomic vacancy concentration in the lattice and increase the risk of layered structure collapse in the cycling process. The electrochemical test results also suggest that the composition with a relatively uniform Li2MnO3 arrangement exhibits better cycling performance (the capacity retention is as high as 95.1% after 50 cycles at 0.1C), oppositely, the coexistence of multiple complex Li2MnO3 arrangements results in poor cycling performance (the capacity retention is below 70% after 50 cycles at 0.1C). The crystal lattice structure comparison between primary and cycled is shown to manifest the effect of Li2MnO3 arrangement on the electrochemical performance and structural stability, providing one possible explanation for the capacity degradation of the Li-rich materials.
引用
收藏
页码:11214 / 11223
页数:10
相关论文
共 50 条
  • [31] Integrating surface structure via triphenyl phosphate treatment to stabilize Li-rich Mn-based cathode materials
    Zhang, Shuai
    Li, Shihao
    Zhang, Haiyan
    Guo, Juanlang
    Gao, Xianggang
    Shi, Hongbing
    Liu, Fangyan
    Huang, Zeyu
    Li, Simin
    Zhang, Zhian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 640 : 373 - 382
  • [32] Building Homogenous Li2TiO3 Coating Layer on Primary Particles to Stabilize Li-Rich Mn-Based Cathode Materials
    Liu, Jiuding
    Wu, Zhonghan
    Yu, Meng
    Hu, Honglu
    Zhang, Yudong
    Zhang, Kai
    Du, Zexue
    Cheng, Fangyi
    Chen, Jun
    SMALL, 2022, 18 (10)
  • [33] Concentration-gradient of Li-rich Mn-based cathode materials with enhanced cycling retention
    Cheng, Lanlan
    Yang, Wenyan
    Zhang, Yifang
    Yang, Wei
    Zhou, Hanbo
    Chen, Shengzhou
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [34] Sulfuration of Li-Rich Mn-Based Cathode Materials for Multianionic Redox and Stabilized Coordination Environment
    Zhang, Kun
    Qi, Jizhen
    Song, Jin
    Zuo, Yuxuan
    Yang, Yali
    Yang, Tonghuan
    Chen, Tao
    Liu, Xi
    Chen, Liwei
    Xia, Dingguo
    ADVANCED MATERIALS, 2022, 34 (11)
  • [35] Oxygen vacancy in Li-rich Mn-based cathode materials: origination, influence, regulation and characterization
    Liu, Xinrui
    Cheng, Jiaoyang
    Guan, Yunlong
    Huang, Songtao
    Lian, Fang
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (17) : 3434 - 3454
  • [36] Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials
    Xie, Huixian
    Xiao, Jiacheng
    Chen, Hongyi
    Zhang, Boyang
    Hui, Kwun Nam
    Zhang, Shanqing
    Liu, Chenyu
    Luo, Dong
    Lin, Zhan
    AAPPS BULLETIN, 2024, 34 (01):
  • [37] Ameliorating electrochemical performance of Li-rich Mn-based cathodes for Li-ion batteries by Fe substitution
    Kim, Won-Chan
    Kim, Juo
    Kim, Ji-Hwan
    Park, Deok-Hye
    Park, Yu-Yeon
    Jang, Jae-Sung
    Ahn, So-Yeon
    Min, Kyoungmin
    Park, Kyung-Won
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (02) : 1135 - 1144
  • [38] Synthesis and electrochemical characterization of Mg-Al co-doped Li-rich Mn-based cathode materials
    Liang, Youwei
    Li, Shiyou
    Xie, Jing
    Yang, Li
    Li, Wenbo
    Li, Chunlei
    Ai, Ling
    Fu, Xiaolan
    Cui, Xiaoling
    Shangguan, Xuehui
    NEW JOURNAL OF CHEMISTRY, 2019, 43 (30) : 12004 - 12012
  • [39] Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials
    Billaud, Juliette
    Sheptyakov, Denis
    Sallard, Sebastien
    Leanza, Daniela
    Talianker, Michael
    Grinblat, Judith
    Sclar, Hadar
    Aurbach, Doron
    Novak, Petr
    Villevieille, Claire
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (25) : 15215 - 15224
  • [40] Borate-Based Surface Coating of Li-Rich Mn-Based Disordered Rocksalt Cathode Materials
    Moghadam, Yasaman Shirazi
    El Kharbachi, Abdel
    Cambaz, Musa Ali
    Dinda, Sirshendu
    Diemant, Thomas
    Hu, Yang
    Melinte, Georgian
    Fichtner, Maximilian
    ADVANCED MATERIALS INTERFACES, 2022, 9 (35)