Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

被引:37
|
作者
Brahimi, S. V. [1 ,2 ]
Yue, S. [1 ]
Sriraman, K. R. [1 ]
机构
[1] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 0E8, Canada
[2] Ind Fasteners Inst, Cleveland, OH 44131 USA
基金
加拿大自然科学与工程研究理事会;
关键词
high-strength fasteners; hydrogen embrittlement susceptibility; tempered martensite; cathodic charging; internal hydrogen embrittlement; environmental hydrogen embrittlement; DIFFUSION; IRON;
D O I
10.1098/rsta.2016.0407
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-strength steel fasteners characterized by tensile strengths above 1100MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Proposal of a hydrogen embrittlement index for a martensitic advanced high-strength steel
    Aiello, Francesco
    Beghini, Marco
    Belardini, Carlo Maria
    Bertini, Leonardo
    Macoretta, Giuseppe
    Monelli, Bernardo Disma
    Valentini, Renzo
    CORROSION SCIENCE, 2023, 222
  • [22] Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review
    Ming-Tu Ma
    Ke-Jian Li
    Yu Si
    Peng-Jun Cao
    Hong-Zhou Lu
    Ai-Min Guo
    Guo-Dong Wang
    Acta Metallurgica Sinica (English Letters), 2023, 36 : 1144 - 1158
  • [23] Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review
    Ma, Ming-Tu
    Li, Ke-Jian
    Si, Yu
    Cao, Peng-Jun
    Lu, Hong-Zhou
    Guo, Ai-Min
    Wang, Guo-Dong
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2023, 36 (07) : 1144 - 1158
  • [24] EFFECT OF TEMPERATURE AND STATE OF STRESS ON HYDROGEN EMBRITTLEMENT OF HIGH-STRENGTH STEEL
    GREER, JB
    VONROSEN.EL
    MARTINEZ, J
    CORROSION, 1972, 28 (10) : 378 - &
  • [25] EFFECTS OF HYDROGEN EMBRITTLEMENT ON THE FRACTURE TOUGHNESS OF HIGH-STRENGTH STEEL STRUCTURES
    Agbo, Sylvester
    Davaripour, Farhad
    Roy, Kshama
    PROCEEDINGS OF 2022 14TH INTERNATIONAL PIPELINE CONFERENCE, IPC2022, VOL 1, 2022,
  • [26] Hydrogen-induced embrittlement wear of a high-strength, low-alloy steel in an acidic environment
    Zhang, TC
    Jiang, XX
    Li, SZ
    CORROSION, 1997, 53 (03) : 200 - 205
  • [27] Temperature effect on hydrogen embrittlement susceptibility of a high strength martensitic steel
    Martiniano, Guilherme Antonelli
    Bose Filho, Waldek Wladimir
    Garcia, Regina Paula
    Franco, Sinesio Domingues
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 110 : 457 - 469
  • [28] HYDROGEN EMBRITTLEMENT OF AISI-8740 ALLOY-STEEL FASTENERS
    WILLIAMS, EL
    ANDERSON, DM
    MATERIALS PERFORMANCE, 1985, 24 (12) : 9 - 12
  • [29] Hydrogen embrittlement susceptibility of a high strength steel X80
    Moro, I.
    Briottet, L.
    Lemoine, P.
    Andrieu, E.
    Blanc, C.
    Odemer, G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (27-28): : 7252 - 7260
  • [30] Evaluation of hydrogen embrittlement susceptibility of high strength steel by the Weibull stress
    Takagi, S
    Inoue, T
    Tsuzaki, K
    Minami, F
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 2001, 65 (12) : 1073 - 1081