Improvements of the Mizukami-Hughes method for convection-diffusion equations

被引:27
|
作者
Knobloch, Petr [1 ]
机构
[1] Charles Univ, Fac Math & Phys, Dept Numer Math, Prague 18675 8, Czech Republic
关键词
stabilized FEM; convection-diffusion; convection-diffusion-reaction; Petrov-Galerkin method; discrete maximum principle;
D O I
10.1016/j.cma.2006.06.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the Mizukami-Hughes method for the numerical solution of scalar two-dimensional steady convection-diffusion equations using conforming triangular piecewise linear finite elements. We propose several modifications of this method to eliminate its shortcomings. The improved method still satisfies the discrete maximum principle and gives very accurate discrete solutions in convection-dominated regime, which is illustrated by several numerical experiments. In addition, we show how the Mizukami-Hughes method can be applied to convection-diffusion-reaction equations and to three-dimensional problems. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:579 / 594
页数:16
相关论文
共 50 条
  • [41] An Efficient Explicit/Implicit Domain Decomposition Method for Convection-Diffusion Equations
    Zhu, Liyong
    Yuan, Guangwei
    Du, Qiang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (04) : 852 - 873
  • [42] Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions
    Hu, Zexi
    Huang, Juntao
    Yong, Wen-An
    PHYSICAL REVIEW E, 2016, 93 (04)
  • [43] A CONSERVATIVE FLUX OPTIMIZATION FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    Liu, Yujie
    Wang, Junping
    Zou, Qingsong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1238 - 1262
  • [44] Convergence analysis of a LDG method for tempered fractional convection-diffusion equations
    Ahmadinia, Mahdi
    Safari, Zeinab
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (01): : 59 - 78
  • [45] A modified upwind difference domain decomposition method for convection-diffusion equations
    Li, Changfeng
    Yuan, Yirang
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (07) : 1584 - 1598
  • [46] The Method of Fundamental Solutions for Solving Convection-Diffusion Equations with Variable Coefficients
    Fan, C. M.
    Chen, C. S.
    Monroe, J.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2009, 1 (02) : 215 - 230
  • [47] A DIFFERENCE FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS IN CYLINDRICAL DOMAINS
    Shi, Chenhong
    He, Yinnian
    Sheen, Dongwoo
    Feng, Xinlong
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (03) : 407 - 430
  • [48] SCHWARZ METHOD FOR SINGULARLY PERTURBED SECOND ORDER CONVECTION-DIFFUSION EQUATIONS
    Roja, J. Christy
    Tamilselvan, A.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (3-4): : 181 - 203
  • [49] An analysis of the weak Galerkin finite element method for convection-diffusion equations
    Zhang, Tie
    Chen, Yanli
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 612 - 621
  • [50] A characteristic nonoverlapping domain decomposition method for multidimensional convection-diffusion equations
    Wang, H
    Liu, JG
    Espedal, MS
    Ewing, RE
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (01) : 89 - 103