Improvements of the Mizukami-Hughes method for convection-diffusion equations

被引:27
|
作者
Knobloch, Petr [1 ]
机构
[1] Charles Univ, Fac Math & Phys, Dept Numer Math, Prague 18675 8, Czech Republic
关键词
stabilized FEM; convection-diffusion; convection-diffusion-reaction; Petrov-Galerkin method; discrete maximum principle;
D O I
10.1016/j.cma.2006.06.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the Mizukami-Hughes method for the numerical solution of scalar two-dimensional steady convection-diffusion equations using conforming triangular piecewise linear finite elements. We propose several modifications of this method to eliminate its shortcomings. The improved method still satisfies the discrete maximum principle and gives very accurate discrete solutions in convection-dominated regime, which is illustrated by several numerical experiments. In addition, we show how the Mizukami-Hughes method can be applied to convection-diffusion-reaction equations and to three-dimensional problems. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:579 / 594
页数:16
相关论文
共 50 条
  • [1] An Explicit Method for Convection-Diffusion Equations
    Ruas, Vitoriano
    Brasil, Antonio, Jr.
    Trales, Paulo
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (01) : 65 - 91
  • [2] An explicit method for convection-diffusion equations
    Vitoriano Ruas
    Antonio Brasil
    Paulo Trales
    Japan Journal of Industrial and Applied Mathematics, 2009, 26
  • [3] A New Method for Solving Convection-Diffusion Equations
    Liao, Wenyuan
    Zhu, Jianping
    CSE 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING, 2008, : 107 - +
  • [4] Relaxation method for unsteady convection-diffusion equations
    Shen, Wensheng
    Zhang, Changjiang
    Zhang, Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) : 908 - 920
  • [5] Convergence analysis of a multigrid method for convection-diffusion equations
    Reusken, A
    NUMERISCHE MATHEMATIK, 2002, 91 (02) : 323 - 349
  • [6] Variational multiscale method for the transient convection-diffusion equations
    Zhu, Hai-Tao
    Ouyang, Jie
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2010, 27 (04): : 601 - 606
  • [7] An adaptive SUPG method for evolutionary convection-diffusion equations
    de Frutos, Javier
    Garcia-Archilla, Bosco
    John, Volker
    Novo, Julia
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 273 : 219 - 237
  • [8] A New Numerical Method for Solving Convection-Diffusion Equations
    Ding, Hengfei
    Zhang, Yuxin
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 463 - 470
  • [9] DISCONTINUOUS FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS
    Abdellatif Agouzal (Laboratoire de Mathematiques Appliquees
    JournalofComputationalMathematics, 2000, (06) : 639 - 644
  • [10] Discontinuous finite element method for convection-diffusion equations
    Agouzal, A
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (06) : 639 - 644