Prediction of cold rolling texture of steels using an Artificial Neural Network

被引:43
|
作者
Brahme, Abhijit [2 ]
Winning, Myrjam [1 ]
Raabe, Dierk [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[2] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
关键词
Artificial Neural Network; Texture prediction; Anisotropy; Cold rolling; Steel; LOW-CARBON STEEL; GRAIN-BOUNDARY CEMENTITE; FINITE-ELEMENT-METHOD; CRYSTAL PLASTICITY; RECRYSTALLIZATION TEXTURES; MODELING DEFORMATION; VOLUME FRACTION; DISPERSION RATE; ROLLED STEEL; BCC METALS;
D O I
10.1016/j.commatsci.2009.04.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an Artificial Neural Network based model for the prediction of cold rolling textures of steels. The goal of this work was to design a model capable of fast online prediction of textures in an engineering environment. Our approach uses a feedforward fully interconnected neural network with standard back-propagation error algorithm for configuring the connector weights. The model uses texture data, in form of fiber texture intensities, as well as carbon content, carbide size and amount of rolling reduction as input to the model. The output of the model is in the form of fiber texture data. The available data sets are divided into training and test sets to calibrate and test the network. The predictions of the network provide an excellent match to the experimentally measured data within the bounding box of the training set. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:800 / 804
页数:5
相关论文
共 50 条
  • [41] POSTTRANSPLANT TUBERCULOSIS PREDICTION USING ARTIFICIAL NEURAL NETWORK
    Starostina, Anna
    Parabina, Elena
    Maslikova, Ulyana
    Tsygankov, Igor
    Yaremin, Boris
    TRANSPLANT INTERNATIONAL, 2019, 32 : 413 - 413
  • [42] Prediction of rubber vulcanization using an artificial neural network
    Lubura, Jelena D.
    Kojic, Predrag
    Pavlicevic, Jelena
    Ikonic, Bojana
    Omorjan, Radovan
    Bera, Oskar
    HEMIJSKA INDUSTRIJA, 2021, 75 (05) : 277 - 283
  • [43] SRAF Printing Prediction Using Artificial Neural Network
    Kwon, Yonghwi
    Yang, Jinho
    Kim, Sungho
    Kim, CheolKyun
    Shin, Youngsoo
    OPTICAL MICROLITHOGRAPHY XXXIII, 2021, 11327
  • [44] Prediction of Egg Production Using Artificial Neural Network
    Ghazanfari, S.
    Nobari, K.
    Tahmoorespur, M.
    IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2011, 1 (01): : 11 - 16
  • [45] Prediction of extrusion pressure using an artificial neural network
    Li, YY
    Bridgwater, J
    POWDER TECHNOLOGY, 2000, 108 (01) : 65 - 73
  • [46] Using artificial neural network for reservoir eutrophication prediction
    Kuo, Jan-Tai
    Hsieh, Ming-Han
    Lung, Wu-Seng
    She, Nian
    ECOLOGICAL MODELLING, 2007, 200 (1-2) : 171 - 177
  • [47] Prediction of the plasma distribution using an artificial neural network
    Li Wei
    Chen Jun-Fang
    Wang Teng
    CHINESE PHYSICS B, 2009, 18 (06) : 2441 - 2444
  • [48] Prediction of turbojet performance by using artificial neural network
    Mohammed, Mortda
    Taher, Maher K.
    Khudhair, Saleh
    MATERIALS TODAY-PROCEEDINGS, 2022, 60 : 1513 - 1522
  • [49] Thermal cracking prediction using artificial neural network
    Zeghal, M.
    PAVEMENT CRACKING: MECHANISMS, MODELING, DETECTION, TESTING AND CASE HISTORIES, 2008, : 379 - 386
  • [50] Prediction of air pollutants by using an artificial neural network
    Sang Hyun Sohn
    Sea Cheon Oh
    Yeong-Koo Yeo
    Korean Journal of Chemical Engineering, 1999, 16 : 382 - 387