Counting finite lattices

被引:21
|
作者
Heitzig, J [1 ]
Reinhold, J [1 ]
机构
[1] Univ Hannover, Inst Math, D-30167 Hannover, Germany
关键词
orderly algorithm; (un-)labeled lattice; tree; canonical; levelized;
D O I
10.1007/PL00013837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The correct values for the number of all unlabeled lattices on n elements are known for n less than or equal to 11. We present a fast orderly algorithm generating all unlabeled lattices up to a given size n. Using this algorithm, we have computed the number of all unlabeled lattices as well as that of all labeled lattices on an n-element set for each n less than or equal to 18.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 50 条
  • [31] On representation of finite lattices
    Kravchenko, A. V.
    Nurakunov, A. M.
    Schwidefsky, M. V.
    ALGEBRA UNIVERSALIS, 2019, 80 (01)
  • [32] ON FAMILIES IN FINITE LATTICES
    LEFMANN, H
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (02) : 165 - 179
  • [33] THE CORE OF FINITE LATTICES
    DUQUENNE, V
    DISCRETE MATHEMATICS, 1991, 88 (2-3) : 133 - 147
  • [34] On representation of finite lattices
    A. V. Kravchenko
    A. M. Nurakunov
    M. V. Schwidefsky
    Algebra universalis, 2019, 80
  • [35] FINITE PSEUDOCOMPLEMENTED LATTICES
    CHAMENINEMBUA, C
    MONJARDET, B
    EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (02) : 89 - 107
  • [36] On Finite Critical Lattices
    Perminova, O. E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 267 : S192 - S200
  • [37] On finite critical lattices
    O. E. Perminova
    Proceedings of the Steklov Institute of Mathematics, 2009, 267 (Suppl 1) : 192 - 200
  • [38] FINITE 4-GENERATED SIMPLE LATTICES CONTAIN ALL FINITE LATTICES
    POGUNTKE, W
    RIVAL, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 55 (01) : 22 - 24
  • [39] COUNTING FINITE POSETS
    NEGGERS, J
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 31 (3-4): : 233 - 258
  • [40] Counting finite models
    Woods, AR
    JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (03) : 925 - 949