Ti3C2Tx MXene for electrode materials of supercapacitors

被引:228
|
作者
Ma, Rui [1 ]
Chen, Zetong [1 ]
Zhao, Danna [1 ]
Zhang, Xujing [1 ]
Zhuo, Jingting [1 ]
Yin, Yajiang [4 ,5 ]
Wang, Xiaofeng [3 ,4 ,5 ]
Yang, Guowei [1 ,2 ]
Yi, Fang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Guangzhou Key Lab Flexible Elect Mat & Wearable D, Guangzhou 510275, Peoples R China
[3] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
[4] Corp Accelerator, Pearl River Delta, Res Inst Tsinghua, Guangzhou 510530, Peoples R China
[5] Corp Accelerator, Guangzhou Grower Tsingron Energy Co Ltd, Guangzhou 510530, Peoples R China
关键词
2-DIMENSIONAL TITANIUM CARBIDE; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; ENERGY-STORAGE; NANOTUBE COMPOSITES; HIGH-CAPACITANCE; VOLUMETRIC CAPACITANCE; STRUCTURE DESIGN; DOPED GRAPHENE; 1ST PRINCIPLES;
D O I
10.1039/d1ta00681a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To promote the development of supercapacitors and their applications in modern electronics, it is crucial to explore novel supercapacitor electrode materials. As a representative member of the rising 2D MXenes, Ti3C2Tx MXene has shown tremendous potential for supercapacitor electrodes owing to its unique physicochemical properties. Here, the most recent advances in Ti3C2Tx-based supercapacitor electrodes are comprehensively reviewed, with an emphasis on the vital role that Ti3C2Tx MXene plays in the remarkable electrochemical performance and related mechanisms. The fabrication methods, electrode structures, working mechanisms, electrochemical performance and related influencing factors, mechanical properties and applications, as well as the associated advantages/disadvantages of Ti3C2Tx-based supercapacitor electrodes are thoroughly and exhaustively summarized and discussed. Based on the recent progress, the existing challenges along with the corresponding possible solutions, and the future prospects of Ti3C2Tx-based materials for supercapacitors are also outlined and discussed.
引用
收藏
页码:11501 / 11529
页数:29
相关论文
共 50 条
  • [31] Sandwich-type macroporous Ti3C2TX MXene frameworks for supercapacitor electrode
    Guo, Tiezhu
    Zhou, Di
    Pang, Lixia
    Darwish, Moustafa Adel
    Shi, Zhongqi
    SCRIPTA MATERIALIA, 2022, 213
  • [32] In situ oxygen doped Ti3C2Tx MXene flexible film as supercapacitor electrode
    Tian, Yapeng
    Ju, Maomao
    Luo, Yijia
    Bin, Xiaoqing
    Lou, Xiaojie
    Que, Wenxiu
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [33] Ti3C2Tx MXene based hybrid electrodes for wearable supercapacitors with varied deformation capabilities
    Zhang, Jingmin
    Jiang, Degang
    Liao, Leiping
    Cui, Liang
    Zheng, Rongkun
    Liu, Jingquan
    CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [34] Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors
    Wen, Yangyang
    Rufford, Thomas E.
    Chen, Xingzhu
    Li, Neng
    Lyu, Miaoqiang
    Dai, Liming
    Wang, Lianzhou
    NANO ENERGY, 2017, 38 : 368 - 376
  • [35] Ti3C2Tx MXene coated carbon fibre electrodes for high performance structural supercapacitors
    Dharmasiri, Bhagya
    Usman, Ken Aldren S.
    Qin, Si Alex
    Razal, Joselito M.
    Tran, Ngon T.
    Coia, Piers
    Harte, Timothy
    Henderson, Luke C.
    CHEMICAL ENGINEERING JOURNAL, 2023, 476
  • [36] Defect engineered Ti3C2Tx MXene electrodes by phosphorus doping with enhanced kinetics for supercapacitors
    Liu, Keke
    Xia, Qixun
    Si, Lijun
    Kong, Ying
    Shinde, Nanasaheb
    Wang, Libo
    Wang, Junkai
    Hu, Qianku
    Zhou, Aiguo
    ELECTROCHIMICA ACTA, 2022, 435
  • [37] Manganese dioxide nanosheets decorated on MXene (Ti3C2TX) with enhanced performance for asymmetric supercapacitors
    Li, Xuelin
    Zhu, Jianfeng
    Zhang, Biao
    Jiao, Yuhong
    Huang, Jiaxuan
    Wang, Fen
    CERAMICS INTERNATIONAL, 2021, 47 (09) : 12211 - 12220
  • [38] Ti3C2Tx MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors
    Zhou, Yihao
    Maleski, Kathleen
    Anasori, Babak
    Thostenson, James O.
    Pang, Yaokun
    Feng, Yaying
    Zeng, Kexin
    Parker, Charles B.
    Zauscher, Stefan
    Gogotsi, Yury
    Glass, Jeffrey T.
    Cao, Changyong
    ACS NANO, 2020, 14 (03) : 3576 - 3586
  • [39] Defect engineered Ti3C2Tx MXene electrodes by phosphorus doping with enhanced kinetics for supercapacitors
    Liu, Keke
    Xia, Qixun
    Si, Lijun
    Kong, Ying
    Shinde, Nanasaheb
    Wang, Libo
    Wang, Junkai
    Hu, Qianku
    Zhou, Aiguo
    Electrochimica Acta, 2022, 435
  • [40] In situ oxygen doped Ti3C2Tx MXene flexible film as supercapacitor electrode
    Tian, Yapeng
    Ju, Maomao
    Luo, Yijia
    Bin, Xiaoqing
    Lou, Xiaojie
    Que, Wenxiu
    Chemical Engineering Journal, 2022, 446