A cookbook for DNase Hi-C

被引:11
|
作者
Gridina, Maria [1 ]
Mozheiko, Evgeniy [1 ]
Valeev, Emil [1 ,2 ]
Nazarenko, Ludmila P. [3 ]
Lopatkina, Maria E. [3 ]
Markova, Zhanna G. [5 ]
Yablonskaya, Maria I. [4 ]
Voinova, Viktoria Yu [4 ]
Shilova, Nadezhda V. [5 ]
Lebedev, Igor N. [3 ]
Fishman, Veniamin [1 ,2 ]
机构
[1] RAS, SB, Inst Cytol & Genet, Lavrentjeva Ave 10, Novosibirsk, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk, Russia
[3] Tomsk Natl Res Med Ctr, Res Inst Med Genet, Kooperativny Str 5, Tomsk, Russia
[4] Clin Res Inst Pediat YE Veltischev, Moscow, Russia
[5] Res Ctr Med Genet, Moskvorechie Str 1, Moscow, Russia
关键词
DNAse I; Hi-C; Genome organization; Human peripheral blood; K562; LNCaP; A549; GENOME ARCHITECTURE; READ ALIGNMENT; PRINCIPLES; COMPLEX; MAP;
D O I
10.1186/s13072-021-00389-5
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background The Hi-C technique is widely employed to study the 3-dimensional chromatin architecture and to assemble genomes. The conventional in situ Hi-C protocol employs restriction enzymes to digest chromatin, which results in nonuniform genomic coverage. Using sequence-agnostic restriction enzymes, such as DNAse I, could help to overcome this limitation. Results In this study, we compare different DNAse Hi-C protocols and identify the critical steps that significantly affect the efficiency of the protocol. In particular, we show that the SDS quenching strategy strongly affects subsequent chromatin digestion. The presence of biotinylated oligonucleotide adapters may lead to ligase reaction by-products, which can be avoided by rational design of the adapter sequences. Moreover, the use of nucleotide-exchange enzymes for biotin fill-in enables simultaneous labelling and repair of DNA ends, similar to the conventional Hi-C protocol. These improvements simplify the protocol, making it less expensive and time-consuming. Conclusions We propose a new robust protocol for the preparation of DNAse Hi-C libraries from cultured human cells and blood samples supplemented with experimental controls and computational tools for the evaluation of library quality.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] HUGIn: Hi-C Unifying Genomic Interrogator
    Martin, Joshua S.
    Xu, Zheng
    Reiner, Alex P.
    Mohlke, Karen L.
    Sullivan, Patrick
    Ren, Bing
    Hu, Ming
    Li, Yun
    BIOINFORMATICS, 2017, 33 (23) : 3793 - 3795
  • [22] Measuring the reproducibility and quality of Hi-C data
    Yardimci, Galip Gurkan
    Ozadam, Hakan
    Sauria, Michael E. G.
    Ursu, Oana
    Yan, Koon-Kiu
    Yang, Tao
    Chakraborty, Abhijit
    Kaul, Arya
    Lajoie, Bryan R.
    Song, Fan
    Zhan, Ye
    Ay, Ferhat
    Gerstein, Mark
    Kundaje, Anshul
    Li, Qunhua
    Taylor, James
    Yue, Feng
    Dekker, Job
    Noble, William S.
    GENOME BIOLOGY, 2019, 20 (1)
  • [23] DESIGN PARAMETERS OF THE HI-C DRAM CELL
    ELMANSY, YA
    BURGHARD, RA
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1982, 17 (05) : 951 - 956
  • [24] LiMCA: Hi-C gets an RNA twist
    Kawaoka, Jane
    Lomvardas, Stavros
    NATURE METHODS, 2024, 21 (06) : 934 - 935
  • [25] Software tools for visualizing Hi-C data
    Yardimci, Galip Gurkan
    Noble, William Stafford
    GENOME BIOLOGY, 2017, 18
  • [26] Comparison of Capture Hi-C Analytical Pipelines
    Aljogol, Dina
    Thompson, I. Richard
    Osborne, Cameron S.
    Mifsud, Borbala
    FRONTIERS IN GENETICS, 2022, 13
  • [27] When ChIA PETs meet Hi-C
    Nicole Rusk
    Nature Methods, 2009, 6 : 863 - 863
  • [28] Computational tools for Hi-C data analysis
    Zhijun Han
    Gang Wei
    Quantitative Biology, 2017, 5 (03) : 215 - 225
  • [29] More to Hi-C than meets the eye
    Myong-Hee Sung
    Gordon L Hager
    Nature Genetics, 2011, 43 : 1047 - 1048
  • [30] Hi-C 2.1 Observations of Reconnection Nanojets
    Patel, Ritesh
    Pant, Vaibhav
    ASTROPHYSICAL JOURNAL, 2022, 938 (02):