Effects of Interfacial Oxidization on Magnetic Damping and Spin-Orbit Torques

被引:9
|
作者
Lee, DongJoon [1 ,2 ]
Jeong, WonMin [2 ]
Yun, DeokHyun [2 ,3 ]
Park, Seung-Young [4 ]
Ju, Byeong-Kwon [3 ]
Lee, Kyung-Jin [5 ]
Min, Byoung-Chul [2 ,6 ]
Koo, Hyun Cheol [1 ,2 ]
Lee, OukJae [2 ]
机构
[1] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol, Ctr Spintron, Seoul 02792, South Korea
[3] Korea Univ, Dept Elect Engn, Seoul 02841, South Korea
[4] Korea Basic Sci Inst, Spin Engn Phys Team, Daejeon 34133, South Korea
[5] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[6] Korea Univ Sci & Technol, KIST Sch, Div Nano & Informat Technol, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
spintronics; spin-orbit torque; spin-Hall effect; Gilbert damping; interfacial magnetic oxide; magnetic resonance;
D O I
10.1021/acsami.1c00608
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We investigate the effects of interfacial oxidation on the perpendicular magnetic anisotropy, magnetic damping, and spin-orbit torques in heavy-metal (Pt)/ferromagnet (Co or NiFe)/capping (MgO/Ta, HfOx, or TaN) structures. At room temperature, the capping materials influence the effective surface magnetic anisotropy energy density, which is associated with the formation of interfacial magnetic oxides. The magnetic damping parameter of Co is considerably influenced by the capping material (especially MgO) while that of NiFe is not. This is possibly due to extra magnetic damping via spin-pumping process across the Co/CoO interface and incoherent magnon generation (spin fluctuation) developed in the antiferromagnetic CoO. It is also observed that both antidamping and field-like spin-orbit torque efficiencies vary with the capping material in the thickness ranges we examined. Our results reveal the crucial role of interfacial oxides on the perpendicular magnetic anisotropy, magnetic damping, and spin-orbit torques.
引用
收藏
页码:19414 / 19421
页数:8
相关论文
共 50 条
  • [31] Spin currents and spin-orbit torques in ferromagnetic trilayers
    Baek, Seung-heon C.
    Amin, Vivek P.
    Oh, Young-Wan
    Go, Gyungchoon
    Lee, Seung-Jae
    Lee, Geun-Hee
    Kim, Kab-Jin
    Stiles, M. D.
    Park, Byong-Guk
    Lee, Kyung-Jin
    NATURE MATERIALS, 2018, 17 (06) : 509 - +
  • [32] Guest Editorial: Special Issue on Spin Pumping and Spin-Orbit Torques in Magnetic Heterostructures
    Kumar, Akash
    Fukami, Shunsuke
    Akerman, Johan
    SPIN, 2024, 14 (02)
  • [33] Perspective: Interface generation of spin-orbit torques
    Sklenar, Joseph
    Zhang, Wei
    Jungfleisch, Matthias B.
    Jiang, Wanjun
    Saglam, Hilal
    Pearson, John E.
    Ketterson, John B.
    Hoffmann, Axel
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (18)
  • [34] Current-induced spin-orbit torques
    Gambardella, Pietro
    Mihai Miron, Ioan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1948): : 3175 - 3197
  • [35] Supercurrent-induced spin-orbit torques
    Hals, Kjetil M. D.
    PHYSICAL REVIEW B, 2016, 93 (11)
  • [36] Spin-orbit torques: Materials, physics, and devices
    Han, Xiufeng
    Wang, Xiao
    Wan, Caihua
    Yu, Guoqiang
    Lv, Xiaorong
    APPLIED PHYSICS LETTERS, 2021, 118 (12)
  • [37] SPIN-ORBIT TORQUES Going in the right direction
    Kurebayashi, Hidekazu
    NATURE PHYSICS, 2017, 13 (03) : 209 - 210
  • [38] Topological insulators for efficient spin-orbit torques
    Han, Jiahao
    Liu, Luqiao
    APL MATERIALS, 2021, 9 (06)
  • [39] Spin-orbit torques in a Rashba honeycomb antiferromagnet
    Sokolewicz, Robert
    Ghosh, Sumit
    Yudin, Dmitry
    Manchon, Aurelien
    Titov, Mikhail
    PHYSICAL REVIEW B, 2019, 100 (21)
  • [40] Ferrimagnetic Dynamics Induced by Spin-Orbit Torques
    Sala, Giacomo
    Gambardella, Pietro
    ADVANCED MATERIALS INTERFACES, 2022, 9 (36)