Design of a digit-serial multiplier over GF(2m) using a karatsuba algorithm

被引:2
|
作者
Lee, Trong-Yen [1 ]
Liu, Min-Jea [1 ]
Huang, Chia-Han [1 ]
Fan, Chia-Chen [2 ]
Tsai, Chia-Chun [3 ]
Wu, Haixia [4 ]
机构
[1] Natl Taipei Univ Technol, Dept Elect Engn, Taipei, Taiwan
[2] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
[3] Nanhua Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
[4] Beijing Inst Technol, Sch Informat & Elect, Beijing, Peoples R China
关键词
Digit-serial multiplier; finite-field; Karatsuba algorithm; PARALLEL SYSTOLIC MULTIPLIERS; IMPLEMENTATION; 2(M);
D O I
10.1080/02533839.2019.1644200
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Karatsuba algorithm (KA) is used for highly accurate multiplication using a divide and conquer approach. A new approach to a polynomial digit-serial multiplier that uses an optimal digit size (d) for KA decomposition has recently been proposed. In this study, the proposed architecture uses three small multipliers to derive an optimal digit size (d) for the case of trinomial based fields. Using the proposed KA decomposition, this study establishes five types of sub-quadratic multipliers, which are, the recombined m-bit exponentiation multipliers using a KA. The theoretical results show that the proposed polynomial exponentiation multipliers that use a KA have a value of (d x m)/2 and involve significantly less time and area complexity than existing digit-serial multipliers. The simulation results for the proposed method demonstrate a respective 68.20%, 77.37%, 72%, 83.18%, 36.66% decrease in area x time over GF(2(36)), GF(2(84)), GF(2(126)), GF(2(204)) and GF(2(340)).
引用
收藏
页码:602 / 612
页数:11
相关论文
共 50 条
  • [31] Scalable and Unified Digit-Serial Processor Array Architecture for Multiplication and Inversion Over GF(2m)
    Ibrahim, Atef
    Gebali, Fayez
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (11) : 2894 - 2906
  • [32] Novel digit-serial systolic array implementation of Euclid's algorithm for division in GF(2m)
    Guo, JH
    Wang, CL
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : A478 - A481
  • [33] Low Register-Complexity Systolic Digit-Serial Multiplier Over GF(2(m)) Based on Trinomials
    Xie, Jiafeng
    Meher, Pramod Kumar
    Zhou, Xiaojun
    Lee, Chiou-Yng
    IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, 2018, 4 (04): : 773 - 783
  • [34] 可配置GF(2m)域Digit-Serial乘法器
    王飞
    来金梅
    章倩苓
    任俊彦
    微电子学与计算机, 2004, (01) : 72 - 74+78
  • [35] A new digit-serial systolic mulitplier for high performance GF(2m) applications
    Kim, CH
    Kwon, S
    Hong, CP
    Nam, IG
    HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2005, 3726 : 560 - 566
  • [36] Efficient Scalable Digit-Serial Inverter Over GF(2m) for Ultra-Low Power Devices
    Ibrahim, Atef
    Al-Somani, Turki F.
    Gebali, Fayez
    IEEE ACCESS, 2016, 4 : 9758 - 9763
  • [37] Bit-serial and digit-serial GF(2m) Montgomery multipliers using linear feedback shift registers
    Morales-Sandoval, M.
    Feregrino-Uribe, C.
    Kitsos, P.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2011, 5 (02): : 86 - 94
  • [38] A high-throughput fully digit-serial polynomial basis finite field GF(2m) multiplier for IoT applications
    Pillutla, Siva Ramakrishna
    Boppana, Lakshmi
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 920 - 924
  • [39] Area/performance trade-off analysis of an FPGA digit-serial GF(2m) Montgomery multiplier based on LFSR
    Morales-Sandoval, M.
    Feregrino-Uribe, C.
    Kitsos, P.
    Cumplido, R.
    COMPUTERS & ELECTRICAL ENGINEERING, 2013, 39 (02) : 542 - 549
  • [40] Low-Latency Digit-Serial Systolic Double Basis Multiplier over GF(2m) Using Subquadratic Toeplitz Matrix-Vector Product Approach
    Pan, Jeng-Shyang
    Azarderakhsh, Reza
    Kermani, Mehran Mozaffari
    Lee, Chiou-Yng
    Lee, Wen-Yo
    Chiou, Che Wun
    Lin, Jim-Min
    IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (05) : 1169 - 1181