Transitive Hashing Network for Heterogeneous Multimedia Retrieval

被引:0
|
作者
Cao, Zhangjie [1 ]
Long, Mingsheng [1 ]
Wang, Jianmin [1 ]
Yang, Qiang [2 ]
机构
[1] Tsinghua Univ, Sch Software, TNList, KLiss,MOE, Beijing, Peoples R China
[2] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing is widely applied to large-scale multimedia retrieval due to the storage and retrieval efficiency. Cross-modal hashing enables efficient retrieval of one modality from database relevant to a query of another modality. Existing work on cross-modal hashing assumes that heterogeneous relationship across modalities is available for learning to hash. This paper relaxes this strict assumption by only requiring heterogeneous relationship in some auxiliary dataset different from the query or database domain. We design a novel hybrid deep architecture, transitive hashing network (THN), to jointly learn cross-modal correlation from the auxiliary dataset, and align the data distributions of the auxiliary dataset with that of the query or database domain, which generates compact transitive hash codes for efficient cross-modal retrieval. Comprehensive empirical evidence validates that the proposed THN approach yields state of the art retrieval performance on standard multimedia benchmarks, i.e. NUS-WIDE and ImageNet-YahooQA.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 50 条
  • [21] Correlation embedding semantic-enhanced hashing for multimedia retrieval
    Chen, Yunfei
    Long, Yitian
    Yang, Zhan
    Long, Jun
    IMAGE AND VISION COMPUTING, 2025, 154
  • [22] Discrete Cross-Modal Hashing for Efficient Multimedia Retrieval
    Ma, Dekui
    Liang, Jian
    Kong, Xiangwei
    He, Ran
    Li, Ying
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2016, : 38 - 43
  • [23] Fast metric multi-view hashing for multimedia retrieval
    Zhu, Jian
    Hu, Pengbo
    Li, Bingqian
    Zhou, Yi
    INFORMATION FUSION, 2024, 103
  • [24] Supervised Distributed Hashing for Large-Scale Multimedia Retrieval
    Zhai, Deming
    Liu, Xianming
    Ji, Xiangyang
    Zhao, Debin
    Satoh, Shin'ichi
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (03) : 675 - 686
  • [25] Boosted Curriculum Multi-View Hashing for Multimedia Retrieval
    Zhu, Jian
    Huang, Zhangmin
    Liu, Lei
    Tang, Chang
    Dai, Li-Rong
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2065 - 2069
  • [26] Robust Unsupervised Cross-modal Hashing for Multimedia Retrieval
    Cheng, Miaomiao
    Jing, Liping
    Ng, Michael K.
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (03)
  • [27] Multi-Modal Hashing for Efficient Multimedia Retrieval: A Survey
    Zhu, Lei
    Zheng, Chaoqun
    Guan, Weili
    Li, Jingjing
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 239 - 260
  • [28] Deep Residual Hashing Network for Image Retrieval
    Jimenez-Lepe, Edwin
    Mendez-Vazquez, Andres
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 780 - 781
  • [29] Binary Neural Network Hashing for Image Retrieval
    Zhang, Wanqian
    Wu, Dayan
    Zhou, Yu
    Li, Bo
    Wang, Weiping
    Meng, Dan
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1318 - 1327
  • [30] Deep Hashing Network for Efficient Similarity Retrieval
    Zhu, Han
    Long, Mingsheng
    Wang, Jianmin
    Cao, Yue
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2415 - 2421