Transitive Hashing Network for Heterogeneous Multimedia Retrieval

被引:0
|
作者
Cao, Zhangjie [1 ]
Long, Mingsheng [1 ]
Wang, Jianmin [1 ]
Yang, Qiang [2 ]
机构
[1] Tsinghua Univ, Sch Software, TNList, KLiss,MOE, Beijing, Peoples R China
[2] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing is widely applied to large-scale multimedia retrieval due to the storage and retrieval efficiency. Cross-modal hashing enables efficient retrieval of one modality from database relevant to a query of another modality. Existing work on cross-modal hashing assumes that heterogeneous relationship across modalities is available for learning to hash. This paper relaxes this strict assumption by only requiring heterogeneous relationship in some auxiliary dataset different from the query or database domain. We design a novel hybrid deep architecture, transitive hashing network (THN), to jointly learn cross-modal correlation from the auxiliary dataset, and align the data distributions of the auxiliary dataset with that of the query or database domain, which generates compact transitive hash codes for efficient cross-modal retrieval. Comprehensive empirical evidence validates that the proposed THN approach yields state of the art retrieval performance on standard multimedia benchmarks, i.e. NUS-WIDE and ImageNet-YahooQA.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 50 条
  • [1] Heterogeneous Hashing Network for Face Retrieval Across Image and Video Domains
    Jing, Chenchen
    Dong, Zhen
    Pei, Mingtao
    Jia, Yunde
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (03) : 782 - 794
  • [2] Parameter Adaptive Contrastive Hashing for multimedia retrieval
    Chen, Yunfei
    Long, Yitian
    Yang, Zhan
    Long, Jun
    NEURAL NETWORKS, 2025, 182
  • [3] Sparse Manifold Embedded Hashing for Multimedia Retrieval
    Wang, Yongxin
    Luo, Xin
    Zhang, Huaxiang
    Xu, Xin-Shun
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2019), 2019, : 312 - 318
  • [4] Supervised Hashing with Pseudo Labels for Scalable Multimedia Retrieval
    Song, Jingkuan
    Gao, LianLi
    Yan, Yan
    Zhang, Dongxiang
    Sebe, Nicu
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 827 - 830
  • [5] Supervised Semantic-Embedded Hashing for Multimedia Retrieval
    Chen, Yunfei
    Long, Jun
    Guo, Lin
    Yang, Zhan
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [6] CLIP Multi-modal Hashing for Multimedia Retrieval
    Zhu, Jian
    Sheng, Mingkai
    Huang, Zhangmin
    Chang, Jingfei
    Jiang, Jinling
    Long, Jian
    Luo, Cheng
    Liu, Lei
    MULTIMEDIA MODELING, MMM 2025, PT I, 2025, 15520 : 195 - 205
  • [7] Multimedia retrieval by deep hashing with multilevel similarity learning
    Liu, Qiuli
    Jin, Lu
    Li, Zechao
    Tang, Jinhui
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 59 : 150 - 158
  • [8] Spectral Multimodal Hashing and Its Application to Multimedia Retrieval
    Zhen, Yi
    Gao, Yue
    Yeung, Dit-Yan
    Zha, Hongyuan
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 27 - 38
  • [9] Robust Cross-view Hashing for Multimedia Retrieval
    Shen, Xiaobo
    Shen, Fumin
    Sun, Quan-Sen
    Yuan, Yun-Hao
    Shen, Heng Tao
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (06) : 893 - 897
  • [10] Supervised hashing with adaptive discrete optimization for multimedia retrieval
    Chen, Sixiu
    Shen, Fumin
    Yang, Yang
    Xu, Xing
    Song, Jingkuan
    NEUROCOMPUTING, 2017, 253 : 97 - 103