BLOOD PRESSURE ESTIMATION FROM PPG SIGNALS USING CONVOLUTIONAL NEURAL NETWORKS AND SIAMESE NETWORK

被引:0
|
作者
Schlesinger, Oded [1 ]
Vigderhouse, Nitai [1 ]
Eytan, Danny [2 ]
Moshe, Yair [1 ]
机构
[1] Technion Israel Inst Technol, Andrew & Erna Viterbi Fac Elect Engn, Signal & Image Proc Lab SIPL, Haifa, Israel
[2] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, Haifa, Israel
关键词
Blood pressure; convolutional neural network (CNN); noninvasive; photoplethysmography (PPG); Siamese network; PHOTOPLETHYSMOGRAPHY; CUFFLESS;
D O I
10.1109/icassp40776.2020.9053446
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Blood pressure (BP) is a vital sign of the human body and an important parameter for early detection of cardiovascular diseases. It is usually measured using cuff-based devices or monitored invasively in critically-ill patients. This paper presents two techniques that enable continuous and noninvasive cuff-less BP estimation using photoplethysmography (PPG) signals with Convolutional Neural Networks (CNNs). The first technique is calibration-free. The second technique achieves a more accurate measurement by estimating BP changes with respect to a patient's PPG and ground truth BP values at calibration time. For this purpose, it uses Siamese network architecture. When trained and tested on the MIMIC-II database, it achieves mean absolute difference in the systolic and diastolic BP of 5.95 mmHg and 3.41 mmHg respectively. These results almost comply with the AAMI recommendation and are as accurate as the values estimated by many home BP measuring devices.
引用
收藏
页码:1135 / 1139
页数:5
相关论文
共 50 条
  • [21] Non-Invasive Blood Pressure Estimation from Photoplethysmography Signals using Artificial Neural Networks
    Bersano, Nicolas
    Sanson, Horacio
    2018 20TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT), 2018, : 29 - 35
  • [22] Blood pressure estimation using neural networks
    Colak, S
    Isik, C
    2004 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2004, : 21 - 25
  • [23] Speaker recognition using convolutional siamese neural networks
    Jung H.
    Yoon S.
    Park N.
    Transactions of the Korean Institute of Electrical Engineers, 2020, 69 (01): : 164 - 169
  • [24] Cuffless blood pressure estimation from PPG signals and its derivatives using deep learning models
    El-Hajj, C.
    Kyriacou, P. A.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [25] A multistage deep neural network model for blood pressure estimation using photoplethysmogram signals
    Esmaelpoor, Jamal
    Moradi, Mohammad Hassan
    Kadkhodamohammadi, Abdolrahim
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 120
  • [26] Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method
    Mousavi, Seyedeh Somayyeh
    Firouzmand, Mohammad
    Charmi, Mostafa
    Hemmati, Mohammad
    Moghadam, Maryam
    Ghorbani, Yadollah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 47 : 196 - 206
  • [27] Blood Pressure Estimation Based on Blood Flow, ECG and Respiratory Signals Using Recurrent Neural Networks
    Polinski, Artur
    Czuszynski, Krzysztof
    Kocejko, Tomasz
    2018 11TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2018, : 86 - 92
  • [28] PPG-BASED AUTOMATED ESTIMATION OF BLOOD PRESSURE USING PATIENT-SPECIFIC NEURAL NETWORK MODELING
    Chakraborty, Abhishek
    Sadhukhan, Deboleena
    Pal, Saurabh
    Mitra, Madhuchhanda
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2020, 20 (06)
  • [29] Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network
    Khodabakhshi, Mohammad Bagher
    Eslamyeh, Naeem
    Sadredini, Seyede Zohreh
    Ghamari, Mohammad
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [30] Estimating Systolic Blood Pressure Using Convolutional Neural Networks
    Rastegar, Solmaz
    Gholamhosseini, Hamid
    Lowe, Andrew
    Mehdipour, Farhad
    Linden, Maria
    PHEALTH 2019, 2019, 261 : 143 - 149