Lie triple systems and Leibniz algebras

被引:0
|
作者
Kurdiani, Revaz [1 ]
机构
[1] I Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, 13 Univ Str, GE-0186 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Leibniz algebras; Lie algebras; Lie triple systems; universal central extensions;
D O I
10.1515/gmj-2020-2053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper deals with the Lie triple systems via Leibniz algebras. A perfect Lie algebra as a perfect Leibniz algebra and as a perfect Lie triple system is considered and the appropriate universal central extensions are studied. Using properties of Leibniz algebras, it is shown that the Lie triple system universal central extension is either the universal central extension of the Leibniz algebra or the universal central extension of the Lie algebra.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 50 条
  • [21] ON THE DERIVATION ALGEBRAS OF LIE MODULE TRIPLE-SYSTEMS
    HOPKINS, NC
    JOURNAL OF ALGEBRA, 1987, 111 (02) : 520 - 527
  • [22] On some algebras related to simple Lie triple systems
    Benito, P
    Draper, C
    Elduque, A
    JOURNAL OF ALGEBRA, 1999, 219 (01) : 234 - 254
  • [23] Leibniz Algebras Constructed by Representations of General Diamond Lie Algebras
    Camacho, L. M.
    Karimjanov, I. A.
    Ladra, M.
    Omirov, B. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 1281 - 1293
  • [24] Rigidity of Some Classes of Lie Algebras in Connection to Leibniz Algebras
    Abdulkareem, Abdulafeez O.
    Rakhimov, Isamiddin S.
    Husain, Sharifah K. Said
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 702 - 707
  • [25] Boolean-Lie algebras and the Leibniz rule
    Bazso, F
    Lábos, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22): : 6871 - 6876
  • [26] Leibniz Algebras Constructed by Representations of General Diamond Lie Algebras
    L. M. Camacho
    I. A. Karimjanov
    M. Ladra
    B. A. Omirov
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 1281 - 1293
  • [27] LEIBNIZ HOMOLOGY OF SEMISIMPLE LIE-ALGEBRAS
    NTOLO, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (08): : 707 - 710
  • [28] The Schur Lie-multiplier of Leibniz algebras
    Casas, J. M.
    Insua, M. A.
    QUAESTIONES MATHEMATICAE, 2018, 41 (07) : 917 - 936
  • [29] About Leibniz cohomology and deformations of Lie algebras
    Fialowski, A.
    Magnin, L.
    Mandal, A.
    JOURNAL OF ALGEBRA, 2013, 383 : 63 - 77
  • [30] Lie-Isoclinism of Pairs of Leibniz Algebras
    Riyahi, Zahra
    Casas Miras, Jose Manuel
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 283 - 296