Canonical Correlation Analysis with Missing Values: A Structural Equation Modeling Approach

被引:2
|
作者
Lu, Zhenqiu [1 ]
机构
[1] Univ Georgia, 325V Aderhold Hall,110 Carlton St, Athens, GA 30602 USA
来源
QUANTITATIVE PSYCHOLOGY | 2019年 / 265卷
关键词
Canonical correlation analysis; Structural equation modeling; Missing values; SEM;
D O I
10.1007/978-3-030-01310-3_22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Canonical correlation analysis (CCA) is a generalization of multiple correlation that examines the relationship between two sets of variables. When there are missing values, spectral decomposition in CCA becomes complicated and difficult to implement. This article investigates structural equation modeling approach to Canonical correlation analysis when data have missing values.
引用
收藏
页码:243 / 254
页数:12
相关论文
共 50 条