Transfer Representation Learning using Inception-V3 for the Detection of Masses in Mammography

被引:0
|
作者
Mednikov, Y. [1 ]
Nehemia, S. [1 ]
Zheng, B. [2 ]
Benzaquen, O. [3 ]
Lederman, D. [4 ]
机构
[1] Ben Gurion Univ Negev, Biomed Engn Dept, Beer Sheva, Israel
[2] Univ Oklahoma, Dept Elect & Comp Engn, Norman, OK 73019 USA
[3] Hasharon Hosp, Rabin Med Ctr, Dept Radiol, Petah Tiqwa, Israel
[4] Holon Inst Technol, Fac Engn, Holon, Israel
关键词
COMPUTER-AIDED DETECTION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Breast cancer is the most prevalent cancer among women. The most common method to detect breast cancer is mammography. However, interpreting mammography is a challenging task that requires high skills and is time-consuming. In this work, we propose a computer-aided diagnosis (CAD) scheme for mammography based on transfer representation learning using the Inception-V3 architecture. We evaluate the performance of the proposed scheme using the INBreast database, where the features are extracted from different layers of the architecture. In order to cope with the small dataset size limitation, we expand the training dataset by generating artificial mammograms and employing different augmentation techniques. The proposed scheme shows great potential with a maximal area under the receiver operating characteristics curve of 0.91.
引用
收藏
页码:2587 / 2590
页数:4
相关论文
共 50 条
  • [41] 改进Inception-v3网络的手势图像识别
    邓志军
    田秋红
    计算机系统应用, 2022, 31 (11) : 157 - 166
  • [42] 基于改进Inception-v3网络的肺炎检测方法
    蒲秋梅
    田景龙
    邢容畅
    赵丽娜
    东北师大学报(自然科学版), 2023, 55 (04) : 67 - 76
  • [43] DeepCAI-V3: Improved Brain Tumor Classification from Noisy Brain MR Images using Convolutional Autoencoder and Inception-V3 Architecture
    Babaferi, Evuarhere Vivian
    Fagbola, Temitayo Matthew
    Thakur, Colin Surendra
    2024 7TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, BIG DATA, COMPUTING AND DATA COMMUNICATION SYSTEMS, ICABCD 2024, 2024,
  • [44] 基于Inception-V3模型的金属板材表面缺陷检测系统
    蔡汉明
    刘明
    轻工机械, 2020, 38 (01) : 71 - 74
  • [45] 基于GoogLeNet Inception-V3模型的电力设备图像识别
    徐凯
    梁志坚
    张镱议
    刘兴华
    郑含博
    高压电器, 2020, 56 (09) : 129 - 135+143
  • [46] Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network
    Mujahid, Muhammad
    Rustam, Furqan
    Alvarez, Roberto
    Mazon, Juan Luis Vidal
    Diez, Isabel de la Torre
    Ashraf, Imran
    DIAGNOSTICS, 2022, 12 (05)
  • [47] Multi-Layer Focused Inception-V3 Models for Fine-Grained Visual Recognition
    Wang B.
    Huang M.
    Liu L.-J.
    Huang Q.-S.
    Shan W.-Q.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (01): : 72 - 78
  • [48] An Improved Neural Network Model Based on Inception-v3 for Oracle Bone Inscription Character Recognition
    Guo, Ziyi
    Zhou, Zihan
    Liu, Bingshuai
    Li, Longquan
    Jiao, Qingju
    Huang, Chenxi
    Zhang, Jianwei
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [49] YOLO Object Detector and Inception-V3 Convolutional Neural Network for Improved Brain Tumor Segmentation
    Shoaib, Muhammad
    Sayed, Nasir
    TRAITEMENT DU SIGNAL, 2022, 39 (01) : 371 - 380
  • [50] MAMMOGRAPHY IMAGE BREAST CANCER DETECTION USING DEEP TRANSFER LEARNING
    Krishna, Timmana Hari
    Rajabhushanam, C.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (07): : 1187 - 1196