Numerical solutions of fractional delay differential equations using Chebyshev wavelet method

被引:14
|
作者
Farooq, Umar [1 ]
Khan, Hassan [1 ]
Baleanu, Dumitru [2 ,3 ]
Arif, Muhammad [1 ]
机构
[1] AWKUM, Dept Math, Mardan, Pakistan
[2] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey
[3] Inst Space Sci, Magurele, Romania
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2019年 / 38卷 / 04期
关键词
Fractional-order differential equations; Chebyshev wavelet method; Caputo operator; STABILITY; ORDER; MODEL; CHAOS;
D O I
10.1007/s40314-019-0953-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present research article, we used a new numerical technique called Chebyshev wavelet method for the numerical solutions of fractional delay differential equations. The Caputo operator is used to define fractional derivatives. The numerical results illustrate the accuracy and reliability of the proposed method. Some numerical examples presented which have shown that the computational study completely supports the compatibility of the suggested method. Similarly, a proposed algorithm can also be applied for other physical problems.
引用
收藏
页数:13
相关论文
共 50 条