Hyperbolic Hopfield neural networks for image classification in content-based image retrieval

被引:15
|
作者
Anitha, K. [1 ]
Dhanalakshmi, R. [2 ]
Naresh, K. [3 ]
Devi, D. Rukmani [4 ]
机构
[1] SIMATS, Saveetha Sch Engn, Chennai, Tamil Nadu, India
[2] Anna Univ, RMK Engn Coll, Chennai, Tamil Nadu, India
[3] VIT Univ, Vellore, Tamil Nadu, India
[4] Anna Univ, RMD Engn Coll, Chennai, Tamil Nadu, India
关键词
Content-based image retrieval; machine learning; hyperbolic valued Hopfield neural network; image classifiers; pattern recognition; SYSTEM;
D O I
10.1142/S0219691320500599
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Neural networks play a significant role in data classification. Complex-valued Hopfield Neural Network (CHNN) is mostly used in various fields including the image classification. Though CHNN has proven its credibility in the classification task, it has a few issues. Activation function of complex-valued neuron maps to a unit circle in the complex plane affecting the resolution factor, flexibility and compatibility to changes, during adaptation in retrieval systems. The proposed work demonstrates Content-Based Image Retrieval System (CBIR) with Hyperbolic Hopfield Neural Networks (HHNN), an analogue of CHNN for classifying images. Activation function of the Hyperbolic neuron is not cyclic in hyperbolic plane. The images are mathematically represented and indexed using the six basic features. The proposed HHNN classifier is trained, tested and evaluated through extensive experiments considering individual features and four combined features for indexing. The obtained results prove that HHNN guides retrieval process, enhances system performance and minimizes the cost of implementing Neural Network Classifier-based image retrieval system.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] Content-based Image Retrieval for Medical Image
    Zheng, Kaimei
    2015 11TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2015, : 219 - 222
  • [22] Mammogram content-based image retrieval based on malignancy classification
    Chikamai, Keith
    Viriri, Serestina
    Tapamo, Jules-Raymond
    INTELLIGENT DATA ANALYSIS, 2017, 21 (05) : 1193 - 1212
  • [23] Color histogram features based image classification in content-based image retrieval systems
    Sergyan, Szabolcs
    2008 6TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS, 2008, : 206 - 209
  • [24] Content-based image classification using a neural network
    Park, SB
    Lee, JW
    Kim, SK
    PATTERN RECOGNITION LETTERS, 2004, 25 (03) : 287 - 300
  • [25] Deep Learning for Plant Classification and Content-Based Image Retrieval
    Gyires-Toth, Balint Pal
    Osvath, Marton
    Papp, David
    Szucs, Gabor
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2019, 19 (01) : 88 - 100
  • [26] A Content-based Image Retrieval Scheme for Lung Nodule Classification
    Wei, Guohui
    Ma, He
    Qian, Wei
    Qi, Shouliang
    Jiang, Hongyang
    CURRENT MEDICAL IMAGING, 2017, 13 (02) : 210 - 216
  • [27] Content-based image retrieval system using neural network
    Karamti, Hanen
    Tmar, Mohamed
    Gargouri, Faiez
    2014 IEEE/ACS 11TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2014, : 723 - 728
  • [28] Content-based image classification
    Schettini, R
    Brambilla, C
    Valsasna, A
    De Ponti, M
    INTERNET IMAGING, 2000, 3964 : 28 - 33
  • [29] Image Features Optimizing for Content-Based Image Retrieval
    Shi, Zhiping
    Liu, Xi
    He, Qing
    Shi, Zhongzhi
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 260 - 264
  • [30] Medical image description in content-based image retrieval
    Hong, Shao
    Cui Wen-Cheng
    Tang Li
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6336 - 6339