Evolutionary strategies of optimization

被引:21
|
作者
Asselmeyer, T
Ebeling, W
Rose, H
机构
[1] Institute of Physics, Humboldt University Berlin, Berlin, D-10115
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 01期
关键词
D O I
10.1103/PhysRevE.56.1171
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Evolutionary algorithms have proved to be a powerful tool for solving complex optimization problems. The underlying physical and biological strategies can equally be described by a Schrodinger equation. The properties of the dynamics of optimization are encoded in the spectrum of the Hamiltonian. Analytic solutions and convergence velocity of the dynamics are calculated and compared with simulations of the corresponding algorithms. The connection between physical and biological strategies is analyzed. Mixing both strategies creates a basic class of evolutionary algorithms improving robustness and velocity of optimization.
引用
收藏
页码:1171 / 1180
页数:10
相关论文
共 50 条
  • [31] Multiobjective Optimization of Bioactive Compound Extraction Process via Evolutionary Strategies
    Ganesan, Timothy
    Elamvazuthi, Irraivan
    Vasant, Pandian
    Shaari, Ku Zilati Ku
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, 2015, 9012 : 13 - 21
  • [32] New Uncertainty Handling Strategies in Multi-objective Evolutionary Optimization
    Voss, Thomas
    Trautmann, Heike
    Igel, Christian
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XI, PT II, 2010, 6239 : 260 - +
  • [33] Evolutionary Multiobjective Optimization Based Control Strategies For An Inverted Pendulum On A Cart
    Patnaik, Awhan
    Behera, L.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3141 - 3147
  • [34] Maintenance optimization under uncertainties using interval methods & evolutionary strategies
    Rocco, CM
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2002 PROCEEDINGS, 2002, : 254 - 259
  • [35] Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization
    Pagliuca, Paolo
    Milano, Nicola
    Nolfi, Stefano
    FRONTIERS IN ROBOTICS AND AI, 2020, 7
  • [36] Comparison of Evolutionary and Rule-Based Strategies for Electromagnetic Device Optimization
    Ouyang, Jun
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 371 - 374
  • [37] Evolutionary algorithm with ensemble strategies based on maximum a posteriori for continuous optimization
    Ghoumari, Asmaa
    Nakib, Amir
    Siarry, Patrick
    INFORMATION SCIENCES, 2018, 460 : 1 - 22
  • [38] Evolutionary Optimization of Control Strategies for Non-Stationary Immersion Environments
    Musaev, Alexander
    Makshanov, Andrey
    Grigoriev, Dmitry
    MATHEMATICS, 2022, 10 (11)
  • [39] Evolutionary Optimization Strategies Applied to Wireless Fleet Management in Emergency Scenarios
    Zappini, L.
    Marchesi, S.
    Polo, A.
    Viani, F.
    Massa, A.
    2015 IEEE 15TH MEDITERRANEAN MICROWAVE SYMPOSIUM (MMS), 2015,
  • [40] Combination of evolutionary strategies and mathematical programming for the optimization of modular steel frames
    Ebenau, C
    Thierauf, G
    DEVELOPMENTS IN COMPUTATIONAL MECHANICS WITH HIGH PERFORMANCE COMPUTING, 1999, : 229 - 234