On a mixed and multiscale domain decomposition method

被引:32
|
作者
Ladeveze, Pierre [1 ]
Neron, David [1 ]
Gosselet, Pierre [1 ]
机构
[1] Univ Paris 06, Lab Mecan & Technol, ENS, CNRS,UMR8535, F-94235 Cachan, France
关键词
domain decomposition; multiscale; computational mechanics;
D O I
10.1016/j.cma.2006.05.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a reexamination of a multiscale computational strategy with homogenization in space and time for the resolution of highly heterogeneous structural problems, focusing on its suitability for parallel computing. Spatially, this strategy can be viewed as a mixed, multilevel domain decomposition method (or, more accurately, as a "structure decomposition" method). Regarding time, a "parallel" property is also described. We also draw bridges between this and other current approaches. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1526 / 1540
页数:15
相关论文
共 50 条
  • [31] A domain decomposition and mixed method for a linear parabolic boundary value problem
    Girault, V
    Glowinski, R
    López, H
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (03) : 491 - 520
  • [32] DOMAIN DECOMPOSITION METHOD FOR ELLIPTIC MIXED BOUNDARY-VALUE PROBLEMS
    MROZ, M
    COMPUTING, 1989, 42 (01) : 45 - 59
  • [33] Large scale applications on parallel computers of a mixed domain decomposition method
    L. Champaney
    J. Y. Cognard
    D. Dureisseix
    P. Ladevèze
    Computational Mechanics, 1997, 19 : 253 - 263
  • [34] Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry
    Khattatov, Eldar
    Yotov, Ivan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (06): : 2081 - 2108
  • [35] Domain decomposition preconditioners for multiscale problems in linear elasticity
    Buck, Marco
    Iliev, Oleg
    Andrae, Heiko
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
  • [36] MULTISCALE MODELLING OF ELECTRICAL CONTACTS USING DOMAIN DECOMPOSITION
    Alotto, Piergiorgio
    Guarnieri, Massimo
    Moro, Federico
    PROCEEDINGS OF THE ASME 11TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, VOL 4, 2012, : 327 - 332
  • [37] A Parallel and Multiscale Domain Decomposition Approach for Transient Dynamics
    Odievre, D.
    Boucard, P. -A.
    Gatuingt, F.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING FOR ENGINEERING, 2009, (90): : 623 - 637
  • [38] A Nonconformal Domain Decomposition Scheme for the Analysis of Multiscale Structures
    Bautista, Mario A. Echeverri
    Vipiana, Francesca
    Francavilla, Matteo Alessandro
    Vasquez, Jorge A. Tobon
    Vecchi, Giuseppe
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (08) : 3548 - 3560
  • [39] A multiscale domain decomposition approach for chemical vapor deposition
    Bogers, J.
    Kumar, K.
    Notten, P. H. L.
    Oudenhoven, J. F. M.
    Pop, I. S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 246 : 65 - 73
  • [40] A scalable time-space multiscale domain decomposition method: adaptive time scale separation
    Passieux, J. -C.
    Ladeveze, P.
    Neron, D.
    COMPUTATIONAL MECHANICS, 2010, 46 (04) : 621 - 633