Principal specializations of Schubert polynomials and pattern containment

被引:5
|
作者
Gao, Yibo [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1016/j.ejc.2020.103291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The principal specialization nu(w) = S-w(1, ... , 1) of the Schubert polynomial at w, which equals the degree of the matrix Schubert variety corresponding to w, has attracted a lot of attention in recent years. In this paper, we show that nu(w) is bounded below by 1+ p(132)(w)+ p(1432)(w) where p(u)(w) is the number of occurrences of the pattern u in w, strengthening a previous result by A. Weigandt. We then make a conjecture relating the principal specialization of Schubert polynomials to pattern containment. Finally, we characterize permutations w whose RC-graphs are connected by simple ladder moves via pattern avoidance. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The Permutahedral Variety, Mixed Eulerian Numbers, and Principal Specializations of Schubert Polynomials
    Nadeau, Philippe
    Tewari, Vasu
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, : 3615 - 3670
  • [2] Principal specializations of Schubert polynomials, multi-layered permutations and asymptotics
    Zhang, Ningxin
    ADVANCES IN APPLIED MATHEMATICS, 2025, 163
  • [3] ASYMPTOTICS OF PRINCIPAL EVALUATIONS OF SCHUBERT POLYNOMIALS FOR LAYERED PERMUTATIONS
    Morales, Alejandro H.
    Pak, Igor
    Panova, Greta
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (04) : 1377 - 1389
  • [4] Schubert functors and Schubert polynomials
    Kraskiewicz, W
    Pragacz, P
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (08) : 1327 - 1344
  • [5] Families of polynomials and their specializations
    Bodin, Arnaud
    Debes, Pierre
    Najib, Salah
    JOURNAL OF NUMBER THEORY, 2017, 170 : 390 - 408
  • [6] Specializations of indecomposable polynomials
    Bodin, Arnaud
    Cheze, Guillaume
    Debes, Pierre
    MANUSCRIPTA MATHEMATICA, 2012, 139 (3-4) : 391 - 403
  • [7] Specializations of grothendieck polynomials
    Buch, AS
    Rimányi, R
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 1 - 4
  • [8] ARITHMETIC SPECIALIZATIONS IN POLYNOMIALS
    SPRINDZUK, VG
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1983, 340 : 26 - 52
  • [9] Specializations of indecomposable polynomials
    Arnaud Bodin
    Guillaume Chèze
    Pierre Dèbes
    Manuscripta Mathematica, 2012, 139 : 391 - 403
  • [10] SCHUBERT POLYNOMIALS
    LASCOUX, A
    SCHUTZENBERGER, MP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (13): : 447 - 450