Specializations of indecomposable polynomials

被引:0
|
作者
Arnaud Bodin
Guillaume Chèze
Pierre Dèbes
机构
[1] Université Lille 1,Laboratoire Paul Painlevé, Mathématiques
[2] Université Paul Sabatier Toulouse 3,Institut de Mathématiques de Toulouse
来源
Manuscripta Mathematica | 2012年 / 139卷
关键词
12E05; 11C08;
D O I
暂无
中图分类号
学科分类号
摘要
We address some questions concerning indecomposable polynomials and their behaviour under specialization. For instance we give a bound on a prime p for the reduction modulo p of an indecomposable polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${P(x)\in {\mathbb{Z}}[x]}$$\end{document} to remain indecomposable. We also obtain a Hilbert like result for indecomposability: if f(t1, . . . , tr, x) is an indecomposable polynomial in several variables with coefficients in a field of characteristic p = 0 or p > deg(f), then the one variable specialized polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f(t_1^\ast+\alpha_1^\ast x,\ldots,t_r^\ast+\alpha_r^\ast x,x)}$$\end{document} is indecomposable for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(t_1^\ast, \ldots, t_r^\ast, \alpha_1^\ast, \ldots,\alpha_r^\ast)\in \overline k^{2r}}$$\end{document} outside a proper Zariski closed subset.
引用
收藏
页码:391 / 403
页数:12
相关论文
共 50 条
  • [1] Specializations of indecomposable polynomials
    Bodin, Arnaud
    Cheze, Guillaume
    Debes, Pierre
    MANUSCRIPTA MATHEMATICA, 2012, 139 (3-4) : 391 - 403
  • [2] Families of polynomials and their specializations
    Bodin, Arnaud
    Debes, Pierre
    Najib, Salah
    JOURNAL OF NUMBER THEORY, 2017, 170 : 390 - 408
  • [3] Specializations of grothendieck polynomials
    Buch, AS
    Rimányi, R
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 1 - 4
  • [4] ARITHMETIC SPECIALIZATIONS IN POLYNOMIALS
    SPRINDZUK, VG
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1983, 340 : 26 - 52
  • [5] Indecomposable polynomials and their spectrum
    Bodin, Arnaud
    Debes, Pierre
    Najib, Salah
    ACTA ARITHMETICA, 2009, 139 (01) : 79 - 100
  • [6] Divisors and specializations of Lucas polynomials
    Amdeberhan, Tewodros
    Can, Mahir Bilen
    Jensen, Melanie
    JOURNAL OF COMBINATORICS, 2015, 6 (1-2) : 69 - 89
  • [7] SPECIALIZATIONS OF GENERALIZED RIKUNA POLYNOMIALS
    Cullinan, John
    Cass, Celeste
    Rasmussen, Alexander
    Trifunovski, Darko
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) : 585 - 600
  • [8] A note on specializations of Grothendieck polynomials
    Fan, Neil J. Y.
    Guo, Peter L.
    DISCRETE MATHEMATICS, 2020, 343 (07)
  • [9] INDECOMPOSABLE CONTINUA AND THE JULIA SETS OF POLYNOMIALS
    MAYER, JC
    ROGERS, JT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) : 795 - 802
  • [10] SPECIALIZATIONS OF GENERALIZED LAGUERRE-POLYNOMIALS
    SIMION, R
    STANTON, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (02) : 712 - 719