An Efficient Elastic Net with Regression Coefficients Method for Variable Selection of Spectrum Data

被引:38
|
作者
Liu, Wenya [1 ]
Li, Qi [1 ]
机构
[1] Dalian Univ Technol, Sch Control Sci & Engn, Dalian, Peoples R China
来源
PLOS ONE | 2017年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
PLS; REGULARIZATION; LASSO;
D O I
10.1371/journal.pone.0171122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using the spectrum data for quality prediction always suffers from noise and colinearity, so variable selection method plays an important role to deal with spectrum data. An efficient elastic net with regression coefficients method (Enet-BETA) is proposed to select the significant variables of the spectrum data in this paper. The proposed Enet-BETA method can not only select important variables to make the quality easy to interpret, but also can improve the stability and feasibility of the built model. Enet-BETA method is not prone to overfitting because of the reduction of redundant variables realized by elastic net method. Hypothesis testing is used to further simplify the model and provide a better insight into the nature of process. The experimental results prove that the proposed Enet-BETA method outperforms the other methods in terms of prediction performance and model interpretation.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A note on variable selection in nonparametric regression with dependent data
    González-Manteiga, W
    Quintela-del-Río, A
    Vieu, P
    STATISTICS & PROBABILITY LETTERS, 2002, 57 (03) : 259 - 268
  • [42] Variable selection with LASSO regression for complex survey data
    Iparragirre, Amaia
    Lumley, Thomas
    Barrio, Irantzu
    Arostegui, Inmaculada
    STAT, 2023, 12 (01):
  • [43] Variable selection in semiparametric regression analysis for longitudinal data
    Peixin Zhao
    Liugen Xue
    Annals of the Institute of Statistical Mathematics, 2012, 64 : 213 - 231
  • [44] Variable selection in semiparametric linear regression with censored data
    Johnson, Brent A.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 351 - 370
  • [45] Variable selection in regression via repeated data splitting
    Thall, PF
    Russell, KE
    Simon, RM
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1997, 6 (04) : 416 - 434
  • [46] Variable selection in rank regression for analyzing longitudinal data
    Fu, Liya
    Wang, You-Gan
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (08) : 2447 - 2458
  • [47] Variable selection in robust regression models for longitudinal data
    Fan, Yali
    Qin, Guoyou
    Zhu, Zhongyi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 109 : 156 - 167
  • [48] Bayesian variable selection for the Cox regression model with spatially varying coefficients with applications to Louisiana respiratory cancer data
    Mu, Jinjian
    Liu, Qingyang
    Kuo, Lynn
    Hu, Guanyu
    BIOMETRICAL JOURNAL, 2021, 63 (08) : 1607 - 1622
  • [49] An Efficient Elastic Net Method for Edge linking of Images
    Yi, Junyan
    Yang, Gang
    Todo, Yuki
    Tang, Zheng
    2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 388 - +
  • [50] A Forward Variable Selection Method for Fuzzy Logistic Regression
    Fatemeh Salmani
    Seyed Mahmoud Taheri
    Alireza Abadi
    International Journal of Fuzzy Systems, 2019, 21 : 1259 - 1269