Effects of precursor solution composition on the performance and I-V hysteresis of perovskite solar cells based on CH3NH3PbI3-xClx

被引:26
|
作者
Zhang, Z. L. [1 ]
Men, B. Q. [2 ]
Liu, Y. F. [1 ]
Gao, H. P. [1 ]
Mao, Y. L. [1 ,3 ]
机构
[1] Henan Univ, Sch Phys & Elect, Kaifeng 475004, Peoples R China
[2] Henan Vocat Coll Agr, Zhongmu 451450, Peoples R China
[3] Henan Univ, Inst Computat Mat Sci, Kaifeng 475004, Peoples R China
来源
关键词
I-V hysteresis; Precursor solution composition; CH3NH3PbI3-xClx; MIXED-HALIDE PEROVSKITE; QUANTUM DOTS; TIO2; LAYER; INTERFACE; CHLORIDE; CRYSTALLIZATION; NANOPARTICLES; FABRICATION; PARAMETERS; TRANSPORT;
D O I
10.1186/s11671-017-1872-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Precursor solution of CH3NH3PbI3-xClx for perovskite solar cells was conventionally prepared by mixing PbCl2 and CH3NH3I with a mole ratio of 1:3 ( PbCl2: CH3NH3I). While in the present study, CH3NH3PbI3-xClx-based solar cells were fabricated using the precursor solutions containing PbCl2 and CH3NH3I with the mole ratios of 1:3, 1.05:3, 1.1:3, and 1.15:3, respectively. The results display that the solar cells with the mole ratio of 1.1:3 present higher power conversion efficiency and less I-V hysteresis than those with the mole ratio of 1:3. Based on some investigations, it is concluded that the higher efficiency could be due to the smooth and pinhole free film formation, high optical absorption, suitable energy band gap, and the large electron transfer efficiency, and the less I-V hysteresis may be attributed to the small low frequency capacitance of the device.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite
    Luo, Shiqiang
    Daoud, Walid A.
    MATERIALS, 2016, 9 (03)
  • [12] Effects of guanidinium addition to CH3NH3PbI3-xClx perovskite photovoltaic devices
    Kishimoto, Taku
    Suzuki, Atsushi
    Ueoka, Naoki
    Oku, Takeo
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2019, 127 (07) : 491 - 497
  • [13] Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells
    Sewvandi, Galhenage A.
    Kodera, Kei
    Ma, Hao
    Nakanishi, Shunsuke
    Feng, Qi
    SCIENTIFIC REPORTS, 2016, 6
  • [14] Fabrication and Characterization of the copper bromides-added CH3NH3PbI3-xClx perovskite solar cells
    Tanaka, Hiroki
    Ohishi, Yuya
    Oku, Takeo
    SYNTHETIC METALS, 2018, 244 : 128 - 133
  • [15] Thickness Dependence of Window Layer on CH3NH3PbI3-XClX Perovskite Solar Cell
    Isoe, Wycliffe
    Mageto, Maxwell
    Maghanga, Christopher
    Mwamburi, Maurice
    Odari, Victor
    Awino, Celline
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2020, 2020
  • [16] Direct Confirmation of Distribution for Cl- in CH3NH3PbI3-xClx Layer of Perovskite Solar Cells
    Cojocaru, Ludmila
    Uchida, Satoshi
    Matsubara, Daiki
    Matsumoto, Hiroaki
    Ito, Katsuji
    Otsu, Yoshihiro
    Chapon, Patrick
    Nakazaki, Jotaro
    Kubo, Takaya
    Segawa, Hiroshi
    CHEMISTRY LETTERS, 2016, 45 (08) : 884 - 886
  • [17] Identifying inverted-hysteresis behavior of CH3NH3PbI3-xClx planar hybrid perovskite solar cells based on external bias precondition
    Jiang, Yurong
    Feng, Yanxing
    Sun, Xiaodong
    Qin, Ruiping
    Ma, Heng
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (38)
  • [18] Performance and Stability Comparison of Low-Cost Mixed Halide Perovskite Solar Cells: CH3NH3PbI3-xClx and CH3NH3PbI3-xSCNx
    Poespawati, Nji Raden
    Sulistianto, Junivan
    Abuzairi, Tomy
    Purnamaningsih, Retno Wigajatri
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2020, 2020
  • [19] Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells
    Edri, Eran
    Kirmayer, Saar
    Mukhopadhyay, Sabyasachi
    Gartsman, Konstantin
    Hodes, Gary
    Cahen, David
    NATURE COMMUNICATIONS, 2014, 5
  • [20] Synergetic Effect of Chloride Doping and CH3NH3PbCl3 on CH3NH3PbI3-xClx Perovskite-Based Solar Cells
    Xu, Feng
    Zhang, Taiyang
    Li, Ge
    Zhao, Yixin
    CHEMSUSCHEM, 2017, 10 (11) : 2365 - 2369