Semi-supervised cross-modal representation learning with GAN-based Asymmetric Transfer Network

被引:1
|
作者
Zhang, Lei [1 ,2 ]
Chen, Leiting [1 ,2 ,3 ]
Ou, Weihua [4 ]
Zhou, Chuan [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Digital Media Technol Key Lab Sichuan Prov, Chengdu, Peoples R China
[3] Inst Elect & Informat Engn UESTC Guangdong, Dongguan, Peoples R China
[4] Guizhou Normal Univ, Sch Big Data & Comp Sci, Guiyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modal retrieval; Modality gap; Generative adversarial network;
D O I
10.1016/j.jvcir.2020.102899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we proposed a semi-supervised common representation learning method with GAN-based Asymmetric Transfer Network (GATN) for cross modality retrieval. GATN utilizes the asymmetric pipeline to guarantee the semantic consistency and adopt (Generative Adversarial Network) GAN to fit the distributions of different modalities. Specifically, the common representation learning across modalities includes two stages: (1) the first stage, GATN trains source mapping network to learn the semantic representation of text modality by supervised method; and (2) the second stage, GAN-based unsupervised modality transfer method is proposed to guide the training of target mapping network, which includes generative network (target mapping network) and discriminative network. Experimental results on three widely-used benchmarks show that GATN have achieved better performance comparing with several existing state-of-the-art methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Multi-Level Cross-Modal Interactive-Network-Based Semi-Supervised Multi-Modal Ship Classification
    Song, Xin
    Chen, Zhikui
    Zhong, Fangming
    Gao, Jing
    Zhang, Jianning
    Li, Peng
    SENSORS, 2024, 24 (22)
  • [32] Semi-supervised cross-modal hashing via modality-specific and cross-modal graph convolutional networks
    Wu, Fei
    Li, Shuaishuai
    Gao, Guangwei
    Ji, Yimu
    Jing, Xiao-Yuan
    Wan, Zhiguo
    PATTERN RECOGNITION, 2023, 136
  • [33] Semi-supervised semantic factorization hashing for fast cross-modal retrieval
    Wang, Jiale
    Li, Guohui
    Pan, Peng
    Zhao, Xiaosong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (19) : 20197 - 20215
  • [34] Clustering-Based Semi-Supervised Cross-Modal Retrieval Using Scene Graph
    Kong, Yixue
    Feng, Yong
    Zhou, Mingliang
    Xiong, Xiancai
    Wang, Yongheng
    Qiang, Baohua
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12) : 1299 - 1314
  • [35] SEMI-SUPERVISED GRAPH CONVOLUTIONAL HASHING NETWORK FOR LARGE-SCALE CROSS-MODAL RETRIEVAL
    Shen, Zhanjian
    Zhai, Deming
    Liu, Xianming
    Jiang, Junjun
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2366 - 2370
  • [36] Semantic Consistency Cross-Modal Retrieval With Semi-Supervised Graph Regularization
    Xu, Gongwen
    Li, Xiaomei
    Zhang, Zhijun
    IEEE ACCESS, 2020, 8 : 14278 - 14288
  • [37] Semi-supervised cross-modal image generation with generative adversarial networks
    Li, Dan
    Du, Changde
    He, Huiguang
    PATTERN RECOGNITION, 2020, 100
  • [38] Semi-supervised semantic factorization hashing for fast cross-modal retrieval
    Jiale Wang
    Guohui Li
    Peng Pan
    Xiaosong Zhao
    Multimedia Tools and Applications, 2017, 76 : 20197 - 20215
  • [39] Semi-supervised Multi-modal Emotion Recognition with Cross-Modal Distribution Matching
    Liang, Jingjun
    Li, Ruichen
    Jin, Qin
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2852 - 2861
  • [40] Self-Training Based Semi-Supervised and Semi-Paired Hashing Cross-Modal Retrieval
    Jing, Rongrong
    Tian, Hu
    Zhang, Xingwei
    Zhou, Gang
    Zheng, Xiaolong
    Zeng, Dajun
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,