Smooth fractal interpolation

被引:73
|
作者
Navascues, M. A.
Sebastian, M. V.
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50018, Spain
[2] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
关键词
Classical Method; Interpolation Error; Fractal Function; General Frame; Fractal Technique;
D O I
10.1155/JIA/2006/78734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal methodology provides a general frame for the understanding of real-world phenomena. In particular, the classical methods of real-data interpolation can be generalized by means of fractal techniques. In this paper, we describe a procedure for the construction of smooth fractal functions, with the help of Hermite osculatory polynomials. As a consequence of the process, we generalize any smooth interpolant by means of a family of fractal functions. In particular, the elements of the class can be defined so that the smoothness of the original is preserved. Under some hypotheses, bounds of the interpolation error for function and derivatives are obtained. A set of interpolating mappings associated to a cubic spline is defined and the density of fractal cubic splines in H-2[a, b] is proven.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Fractal Calculus on Fractal Interpolation Functions
    Gowrisankar, Arulprakash
    Khalili Golmankhaneh, Alireza
    Serpa, Cristina
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [12] Fractal Interpolation Densities
    K. Igudesman
    M. Tumakov
    S. Snegina
    D. Tumakov
    Lobachevskii Journal of Mathematics, 2023, 44 : 3690 - 3696
  • [13] Fractal Interpolation on a Torus
    Navascues, M. A.
    ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (01) : 93 - 104
  • [14] Fractal polynomial interpolation
    Navascués, MA
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (02): : 401 - 418
  • [15] On stability of fractal interpolation
    Feng, ZG
    Xie, HP
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1998, 6 (03): : 269 - 273
  • [16] FRACTAL FUNCTIONS AND INTERPOLATION
    BARNSLEY, MF
    CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 303 - 329
  • [17] Fractal Interpolation Densities
    Igudesman, K.
    Tumakov, M.
    Snegina, S.
    Tumakov, D.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (09) : 3690 - 3696
  • [18] Fractal Interpolation on a Torus
    M. A. Navascués
    Acta Applicandae Mathematicae, 2009, 106 : 93 - 104
  • [19] SMOOTH INTERPOLATION
    RIVLIN, TJ
    SIAM REVIEW, 1959, 1 (01) : 60 - 63
  • [20] Fractal image compression with fractal interpolation and fractal image coding
    Yang, Shaoguo
    Yin, Zhongke
    Luo, Bingwei
    Dianzi Kexue Xuekan/Journal of Electronics, 20 (05): : 699 - 702