Spectral clustering based on similarity and dissimilarity criterion

被引:12
|
作者
Wang, Bangjun [1 ,2 ]
Zhang, Li [2 ]
Wu, Caili [2 ]
Li, Fan-zhang [2 ]
Zhang, Zhao [2 ]
机构
[1] Beijing Jiaotong Univ, Beijing 100044, Peoples R China
[2] Soochow Univ, Suzhou 215006, Jiangsu, Peoples R China
关键词
Spectral clustering; Normalized cut; Similarity criterion; Dissimilarity criterion;
D O I
10.1007/s10044-015-0515-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The clustering assumption is to maximize the within-cluster similarity and simultaneously to minimize the between-cluster similarity for a given unlabeled dataset. This paper deals with a new spectral clustering algorithm based on a similarity and dissimilarity criterion by incorporating a dissimilarity criterion into the normalized cut criterion. The within-cluster similarity and the between-cluster dissimilarity can be enhanced to result in good clustering performance. Experimental results on toy and real-world datasets show that the new spectral clustering algorithm has a promising performance.
引用
收藏
页码:495 / 506
页数:12
相关论文
共 50 条
  • [41] An Empirical Analysis of Similarity Matrix for Spectral Clustering
    Zhang, Sheng
    He, Xiaoqi
    Liu, Yangguang
    Huang, Qichun
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING II, PTS 1-3, 2013, 433-435 : 725 - +
  • [42] Similarity and dissimilarity in posets
    Klein, DJ
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1995, 18 (2-4) : 321 - 348
  • [43] Fuzzy Hierarchical Clustering based on Fuzzy Dissimilarity
    Lv, Y. Q.
    Lee, C. K. M.
    2011 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2011, : 1024 - 1027
  • [44] A new cluster isolation criterion based on dissimilarity increments
    Fred, ALN
    Leitao, JMN
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (08) : 944 - 958
  • [45] Fuzzy Similarity Measure Based Spectral Clustering Framework for Noisy Image Segmentation
    Goyal, Subhanshu
    Kumar, Sushil
    Zaveri, M. A.
    Shukla, A. K.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2017, 25 (04) : 649 - 673
  • [46] A Scalable Spectral Clustering Algorithm Based on Landmark-Embedding and Cosine Similarity
    Chen, Guangliang
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2018, 2018, 11004 : 52 - 62
  • [47] CLASSIFICATION BASED ON SIMILARITY AND DISSIMILARITY THROUGH EQUIVALENCE CLASSES
    Keshavarzi, M.
    Dehghan, M. A.
    Mashinchi, M.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2009, 8 (02) : 203 - 215
  • [48] Approximation spaces based on relations of similarity and dissimilarity of objects
    Gomolinska, Anna
    FUNDAMENTA INFORMATICAE, 2007, 79 (3-4) : 319 - 333
  • [49] Spectral Library Clustering Using a Bayesian Information Criterion
    Piper, Jonathan
    Duselis, John
    2016 SENSOR SIGNAL PROCESSING FOR DEFENCE (SSPD), 2016, : 66 - 70
  • [50] VECTOR DISSIMILARITY AND CLUSTERING
    LEFKOVITCH, LP
    MATHEMATICAL BIOSCIENCES, 1991, 104 (01) : 39 - 48