On the non-uniqueness of minimal projection in Lp spaces

被引:3
|
作者
Shekhtman, Boris [1 ]
Skrzypek, Leslaw [1 ]
机构
[1] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
Minimal projections; NORM-ONE PROJECTIONS; FOURIER PROJECTION; CODIMENSION-ONE; BANACH-SPACES; SUBSPACES; UNIQUENESS; PROPERTY;
D O I
10.1016/j.jat.2008.08.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of this note is to exhibit a simple example of subspaces U subset of L-p(mu) (p not equal 2) that admit two different projections with minimal norm. While for p = 1, infinity, such subspaces are well-known [W. Odyniec, G. Lewicki, Minimal Projections in Banach Spaces, in: Lecture Notes in Mathematics, vol. 1449, Springer-Verlag, Berlin, 1990. Problems of existence and uniqueness and their application], for 1 < p < infinity their existence was open. Published by Elsevier Inc.
引用
收藏
页码:23 / 34
页数:12
相关论文
共 50 条
  • [21] THE NON-UNIQUENESS OF LINGUISTIC INTUITIONS
    CARROLL, JM
    BEVER, TG
    POLLACK, CR
    LANGUAGE, 1981, 57 (02) : 368 - 383
  • [22] Complexity, Networks, and Non-Uniqueness
    Baker, Alan
    FOUNDATIONS OF SCIENCE, 2013, 18 (04) : 687 - 705
  • [23] NON-UNIQUENESS OF PHONOLOGICAL REPRESENTATIONS
    SCHANE, SA
    LANGUAGE, 1968, 44 (04) : 709 - 716
  • [24] Non-uniqueness of atmospheric modeling
    Judge, PG
    McIntosh, SW
    SOLAR PHYSICS, 1999, 190 (1-2) : 331 - 350
  • [25] STRONG UNIQUENESS IN LP SPACES
    ANGELOS, J
    EGGER, A
    JOURNAL OF APPROXIMATION THEORY, 1984, 42 (01) : 14 - 26
  • [26] Non-uniqueness and instability of 'ankylography'
    Wang, Ge
    Yu, Hengyong
    Cong, Wenxiang
    Katsevich, Alexander
    NATURE, 2011, 480 (7375) : E2 - E3
  • [27] Complexity, Networks, and Non-Uniqueness
    Alan Baker
    Foundations of Science, 2013, 18 : 687 - 705
  • [28] Non-uniqueness and instability of ‘ankylography’
    Ge Wang
    Hengyong Yu
    Wenxiang Cong
    Alexander Katsevich
    Nature, 2011, 480 : E2 - E3
  • [29] NON-UNIQUENESS IN ELASTOPLASTIC ANALYSIS
    TINLOI, F
    WONG, MB
    MECHANICS OF STRUCTURES AND MACHINES, 1989, 16 (04): : 423 - 437
  • [30] Uniqueness and non-uniqueness in the non-axisymmetric direction problem
    Kaiser, R.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2012, 65 (03): : 347 - 360