glioblastoma multiforme (GBM);
habitats;
feature selection;
survival time prediction;
magnetic resonance image;
TEXTURE;
BRAIN;
MRI;
CLASSIFICATION;
HETEROGENEITY;
EVOLUTION;
DYNAMICS;
MODELS;
D O I:
10.1002/jmri.25497
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
PurposeGlioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. Most GBMs exhibit extensive regional heterogeneity at tissue, cellular, and molecular scales, but the clinical relevance of the observed spatial imaging characteristics remains unknown. We investigated pretreatment magnetic resonance imaging (MRI) scans of GBMs to identify tumor subregions and quantify their image-based spatial characteristics that are associated with survival time. Materials and MethodsWe quantified tumor subregions (termed habitats) in GBMs, which are hypothesized to capture intratumoral characteristics using multiple MRI sequences. For proof-of-concept, we developed a computational framework that used intratumoral grouping and spatial mapping to identify GBM tumor subregions and yield habitat-based features. Using a feature selector and three classifiers, experimental results from two datasets are reported, including Dataset1 with 32 GBM patients (594 tumor slices) and Dataset2 with 22 GBM patients, who did not undergo resection (261 tumor slices) for survival group prediction. ResultsIn both datasets, we show that habitat-based features achieved 87.50% and 86.36% accuracies for survival group prediction, respectively, using leave-one-out cross-validation. Experimental results revealed that spatially correlated features between signal-enhanced subregions were effective for predicting survival groups (P < 0.05 for all three machine-learning classifiers). ConclusionThe quantitative spatial-correlated features derived from MRI-defined tumor subregions in GBM could be effectively used to predict the survival time of patients. Level of Evidence: 2 J. MAGN. RESON. IMAGING 2017;46:115-123
机构:
Natl Univ Singapore, Dept Biomed Engn, Singapore, Singapore
Chinese Univ Hong Kong CUHK, Dept Elect Engn, Hong Kong, Peoples R China
Chinese Univ Hong Kong CUHK, Shun Hing Inst Adv Engn, Hong Kong, Peoples R ChinaNatl Univ Singapore, Dept Biomed Engn, Singapore, Singapore
机构:
Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Harvard Med Sch, Boston, MA 02115 USABrigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Han, Wei
Qin, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Dana Farber Canc Inst, Dept Imaging, Boston, MA 02115 USA
Harvard Med Sch, Boston, MA 02115 USABrigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Qin, Lei
Bay, Camden
论文数: 0引用数: 0
h-index: 0
机构:
Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Harvard Med Sch, Boston, MA 02115 USABrigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Bay, Camden
Chen, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
South China Univ Technol, Guangzhou Peoples Hosp 1, Sch Med, Dept Radiol, Guangzhou, Guangdong, Peoples R ChinaBrigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Chen, Xin
Yu, Kun-Hsing
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Boston, MA 02115 USABrigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Yu, Kun-Hsing
Li, Angie
论文数: 0引用数: 0
h-index: 0
机构:
Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USABrigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Li, Angie
Xu, Xiaoyin
论文数: 0引用数: 0
h-index: 0
机构:
Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Harvard Med Sch, Boston, MA 02115 USABrigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Xu, Xiaoyin
Young, Geoffrey S.
论文数: 0引用数: 0
h-index: 0
机构:
Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Dana Farber Canc Inst, Dept Imaging, Boston, MA 02115 USA
Harvard Med Sch, Boston, MA 02115 USABrigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
Young, Geoffrey S.
MEDICAL IMAGING 2020: IMAGE PROCESSING,
2021,
11313