Parallel Multiobjective Feature Selection for Binary Classificatio

被引:0
|
作者
Deniz, Ayca [1 ]
Kiziloz, Hakan Ezgi [2 ]
机构
[1] Middle East Tech Univ, Comp Engn Dept, Ankara, Turkey
[2] Univ Turkish Aeronaut Assoc, Comp Engn Dept, Ankara, Turkey
关键词
Feature selection; Multiobjective optimization; Parallel processing;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Feature selection has become a prominent step for many research studies as available data increases continuously with the advances in technology. The objective of feature selection is two-fold: minimizing the number of features and maximizing learning performance. Therefore, it requires a multi-objective optimization. In this study, we utilize the multi-core nature of a regular PC in the feature selection domain. For this purpose, we build three models that exploit the parallel processing capability of a modern CPU. We execute the feature selection task on a single processor in the first model as a baseline. In other models, we execute the feature selection task in four cores of the CPU, in parallel. Specifically, in the second model, we decrease the population size per processor and explore whether we can achieve comparable solution sets in less amount of time. The third model preserves the population size and explores a more extensive search space. We compare the results of these models in terms of accuracy, number of features and execution time. Experiment results show that parallel processing in the feature selection domain leads to faster execution and better feature subsets.
引用
收藏
页码:141 / 145
页数:5
相关论文
共 50 条
  • [11] Parallel Binary Rafflesia Optimization Algorithm and Its Application in Feature Selection Problem
    Pan, Jeng-Shyang
    Shi, Hao-Jie
    Chu, Shu-Chuan
    Hu, Pei
    Shehadeh, Hisham A.
    SYMMETRY-BASEL, 2023, 15 (05):
  • [12] Evolutionary Multitasking for Multiobjective Feature Selection in Classification
    Lin, Jiabin
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (06) : 1852 - 1866
  • [13] Interactive evolutionary approaches to multiobjective feature selection
    Ozmen, Muberra
    Karakaya, Gulsah
    Koksalan, Murat
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2018, 25 (03) : 1027 - 1052
  • [14] Evolutionary Multiobjective Feature Selection for Sentiment Analysis
    Deniz, Ayca
    Angin, Merih
    Angin, Pelin
    IEEE ACCESS, 2021, 9 : 142982 - 142996
  • [15] A Multimodal Multiobjective Genetic Algorithm for Feature Selection
    Liang, Jing
    Yang, Junting
    Yue, Caitong
    Li, Gongping
    Yu, Kunjie
    Qu, Boyang
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [16] Multiobjective Differential Evolution for Feature Selection in Classification
    Wang, Peng
    Xue, Bing
    Liang, Jing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4579 - 4593
  • [17] Multiobjective Evolutionary Feature Selection for Fuzzy Classification
    Jimenez, Fernando
    Martinez, Carlos
    Marzano, Enrico
    Tomas Palma, Jose
    Sanchez, Gracia
    Sciavicco, Guido
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (05) : 1085 - 1099
  • [18] Robust multiobjective evolutionary feature subset selection algorithm for binary classification using machine learning techniques
    Deniz, Ayca
    Kiziloz, Hakan Ezgi
    Dokeroglu, Tansel
    Cosar, Ahmet
    NEUROCOMPUTING, 2017, 241 : 128 - 146
  • [19] Binary feature mask optimization for feature selection
    Lorasdagi, Mehmet E.
    Turali, Mehmet Y.
    Kozat, Suleyman S.
    Neural Computing and Applications, 2025, 37 (06) : 5155 - 5167
  • [20] Feature Selection of Parallel Binary Moth-flame Optimization Algorithm Based on Spark
    Chen, Hongwei
    Fu, Heng
    Cao, Qianqian
    Han, Lin
    Yan, Lingyu
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 408 - 412