An adaptive neuro-fuzzy model for prediction of student's academic performance

被引:65
|
作者
Taylan, Osman [1 ]
Karagoezoglu, Bahattin [2 ]
机构
[1] King Abdulaziz Univ, Dept Ind Engn, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
关键词
Neuro-fuzzy system; Student academic performance; Learning fuzzy models; SYSTEMS;
D O I
10.1016/j.cie.2009.01.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces a systematic approach for the design of a fuzzy inference system based on a class of neural networks to assess the students' academic performance. Fuzzy systems have reached a recognized success in several applications to solve diverse class of problems. Currently, there is an increasing trend to expand them with learning and adaptation capabilities through combinations with other techniques. Fuzzy systems-neural networks and fuzzy systems-genetic algorithms are the most successful applications of soft computing techniques with hybrid characteristics and learning capabilities. The developed method uses a fuzzy system augmented by neural networks to enhance some of its characteristics like flexibility, speed, and adaptability, which is called the adaptive neuro-fuzzy inference system (ANFIS). New trends in soft computing techniques, their applications, model development of fuzzy systems, integration, hybridization and adaptation are also introduced. The parameters set to facilitate the hybrid learning rules for the constitution of the Sugeno-type ANFIS architecture is then elaborated. The method can produce crisp numerical outcomes to predict the student's academic performance (SAP). It also provides an alternative solution to deal with imprecise data. The results of the ANFIS model are as robust as those of the statistical methods, yet they encourage a more natural way to interpret the student's outcomes. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:732 / 741
页数:10
相关论文
共 50 条
  • [31] Prediction Model for Wire Bonding Process through Adaptive Neuro-Fuzzy Inference System
    Gao, Jian
    Liu, Changhong
    Chen, Xin
    Zheng, Detao
    Li, Ketian
    2009 INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY & HIGH DENSITY PACKAGING (ICEPT-HDP 2009), 2009, : 833 - 837
  • [32] PREDICTION OF BEARING FAULT SIZE BY USING MODEL OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Kaplan, Kaplan
    Kuncan, Melih
    Ertunc, H. Metin
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1925 - 1928
  • [33] On Neuro-Fuzzy Prediction in MATLAB
    Pashchenko, F. F.
    Pashchenko, A. F.
    Durgaryan, I. S.
    Kudinov, Y. I.
    Kelina, A. Y.
    Le Van Dinh
    PROCEEDINGS OF THE 2015 10TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, 2015, : 1538 - 1541
  • [34] Neuro-Fuzzy Risk Prediction Model for Computational Grids
    Abdelwahab, Sara
    Ojha, Varun Kumar
    Abraham, Ajith
    PROCEEDINGS OF THE SECOND INTERNATIONAL AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT (AECIA 2015), 2016, 427 : 127 - 136
  • [35] Neuro-fuzzy prediction model of occupational injuries in mining
    Ivaz, Jelena S.
    Petrovic, Dejan V.
    Stojadinovic, Sasa S.
    Stojkovic, Pavle Z.
    Petrovic, Sanja J.
    Zlatanovic, Dragan M.
    INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS, 2025, 31 (01) : 24 - 33
  • [36] A neuro-fuzzy approach in student modeling
    Stathacopoulou, R
    Grigoriadou, M
    Magoulas, GD
    Mitropoulos, D
    USER MODELING 2003, PROCEEDINGS, 2003, 2702 : 337 - 341
  • [37] Prediction of the Performance of a Solar Thermal Energy System Using Adaptive Neuro-Fuzzy Inference System
    Yaici, Wahiba
    Entchev, Evgueniy
    2014 INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATION (ICRERA), 2014, : 601 - 604
  • [38] Adaptive Neuro-Fuzzy Inference System modelling for performance prediction of solar thermal energy system
    Yaici, Wahiba
    Entchev, Evgueniy
    RENEWABLE ENERGY, 2016, 86 : 302 - 315
  • [39] Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
    Xue, Xinhua
    Yang, Xingguo
    NATURAL HAZARDS, 2013, 67 (02) : 901 - 917
  • [40] Adaptive Multidimensional Neuro-Fuzzy Inference System for Time Series Prediction
    Velasquez, J. D.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (08) : 2694 - 2699