TWINVO: UNSUPERVISED LEARNING OF MONOCULAR VISUAL ODOMETRY USING BI-DIRECTION TWIN NETWORK

被引:0
|
作者
Cai, Xing [1 ]
Zhang, Lanqing [1 ]
Li, Chengyuan [1 ]
Li, Ge [1 ]
Li, Thomas H. [2 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Beijing, Peoples R China
[2] Peking Univ, Adv Inst Informat Technol, Beijing, Peoples R China
关键词
Monocular Visual Odometry; Depth Estimation; SLAM;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, more attention has been paid to the use of unsupervised deep learning approaches in Visual Odometry (VO). In this paper, we present a novel unsupervised learning framework called TwinVO for the estimation of 6-DoF camera poses and monocular depths. Taking account of the extreme imbalance between forward and backward camera motions in datasets, we provide an innovative twin module to predict bi-direction ego-motions simultaneously. Meanwhile, motivated by the cooperative game theory, an Inversion Consistency Constraint is suggested to supervise the bi-direction motions so that a final win-win state is achieved. Furthermore, more delicate structures are adopted in depth estimation network to gain about 37% the number of parameters reduction as well as achieve better performance. Extensive experiments on the KITTI dataset reveal that our scheme achieves superior performance and provides better results for both pose and depth estimation.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos
    Ozyoruk, Kutsev Bengisu
    Gokceler, Guliz Irem
    Bobrow, Taylor L.
    Coskun, Gulfize
    Incetan, Kagan
    Almalioglu, Yasin
    Mahmood, Faisal
    Curto, Eva
    Perdigoto, Luis
    Oliveira, Marina
    Sahin, Hasan
    Araujo, Helder
    Alexandrino, Henrique
    Durr, Nicholas J.
    Gilbert, Hunter B.
    Turan, Mehmet
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [42] Learning Monocular Visual Odometry through Geometry-Aware Curriculum Learning
    Saputra, Muhamad Risqi U.
    de Gusmao, Pedro P. B.
    Wang, Sen
    Markham, Andrew
    Trigoni, Niki
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 3549 - 3555
  • [43] Graph attention network-optimized dynamic monocular visual odometry
    Hongru, Zhao
    Xiuquan, Qiao
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23067 - 23082
  • [44] Graph attention network-optimized dynamic monocular visual odometry
    Zhao Hongru
    Qiao Xiuquan
    Applied Intelligence, 2023, 53 : 23067 - 23082
  • [45] A Global Pose and Relative Pose Fusion Network for Monocular Visual Odometry
    Su, Bo
    Zang, Tianxiang
    IEEE ACCESS, 2024, 12 : 108863 - 108875
  • [46] DEEP UNSUPERVISED LEARNING FOR SIMULTANEOUS VISUAL ODOMETRY AND DEPTH ESTIMATION
    Lu, Yawen
    Lu, Guoyu
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2571 - 2575
  • [47] Monocular Visual Odometry in Urban Environments Using an Omnidirectional Camera
    Tardif, Jean-Philippe
    Pavlidis, Yanis
    Daniilidis, Kostas
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 2531 - 2538
  • [48] Stereo Visual Odometry Failure Recovery Using Monocular Techniques
    Giubilato, Riccardo
    Chiodini, Sebastiano
    Pertile, Marco
    Debei, Stefano
    2017 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2017, : 158 - 163
  • [49] Monocular Visual Odometry Scale Recovery using Geometrical Constraint
    Wang, Xiangwei
    Zhang, Hui
    Yin, Xiaochuan
    Du, Mingxiao
    Chen, Qijun
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 988 - 995
  • [50] Monocular Visual Odometry Using Vertical Lines in Urban Area
    Li, Haifeng
    Wang, Hongpeng
    Liu, Jingtai
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 5676 - 5681