Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam

被引:60
|
作者
Ip, Jack Chi-Ho [1 ,2 ,3 ]
Xu, Ting [1 ,2 ,3 ]
Sun, Jin [3 ,4 ]
Li, Runsheng [5 ]
Chen, Chong [6 ]
Lan, Yi [3 ,4 ]
Han, Zhuang [7 ]
Zhang, Haibin [7 ]
Wei, Jiangong [8 ]
Wang, Hongbin [8 ]
Tao, Jun [8 ]
Cai, Zongwei [9 ]
Qian, Pei-Yuan [3 ,4 ]
Qiu, Jian-Wen [1 ,2 ,3 ]
机构
[1] Hong Kong Baptist Univ, Dept Biol, Hong Kong, Peoples R China
[2] HKBU Inst Res & Continuing Educ, Virtual Univ Pk, Shenzhen, Peoples R China
[3] Hong Kong Univ Sci & Technol, Southern Marine Sci & Engn Guangdong Lab Guangzho, Hong Kong Branch, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Ocean Sci, Div Life Sci, Hong Kong, Peoples R China
[5] City Univ Hong Kong, Jockey Club Coll Vet Med & Life Sci, Dept Infect Dis & Publ Hlth, Hong Kong, Peoples R China
[6] Japan Agcy Marine Earth Sci & Technol JAMSTEC, X STAR, Yokosuka, Kanagawa, Japan
[7] Chinese Acad Sci, Sanya Inst Deep Sea Sci & Engn, Sanya, Hainan, Peoples R China
[8] China Geol Survey, MLR Key Lab Marine Mineral Resources, Guangzhou Marine Geol Survey, Guangzhou, Peoples R China
[9] Hong Kong Baptist Univ, State Key Lab Environm & Biol Anal, Hong Kong, Peoples R China
关键词
cold seep; genome assembly; genome erosion; hydrothermal vent; Mollusca; symbiosis; CHEMOAUTOTROPHIC BACTERIA; CALYPTOGENA-MAGNIFICA; RIFTIA-PACHYPTILA; GENE-EXPRESSION; SYMBIONT; SULFIDE; HEMOGLOBIN; EVOLUTION; BIVALVIA; INSIGHTS;
D O I
10.1093/molbev/msaa241
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endosymbiosis with chemosynthetic bacteria has enabled many deep-sea invertebrates to thrive at hydrothermal vents and cold seeps, but most previous studies on this mutualism have focused on the bacteria only. Vesicomyid clams dominate global deep-sea chemosynthesis-based ecosystems. They differ from most deep-sea symbiotic animals in passing their symbionts from parent to offspring, enabling intricate coevolution between the host and the symbiont. Here, we sequenced the genomes of the clam Archivesica marissinica (Bivalvia: Vesicomyidae) and its bacterial symbiont to understand the genomic/metabolic integration behind this symbiosis. At 1.52 Gb, the clam genome encodes 28 genes horizontally transferred from bacteria, a large number of pseudogenes and transposable elements whose massive expansion corresponded to the timing of the rise and subsequent divergence of symbiont-bearing vesicomyids. The genome exhibits gene family expansion in cellular processes that likely facilitate chemoautotrophy, including gas delivery to support energy and carbon production, metabolite exchange with the symbiont, and regulation of the bacteriocyte population. Contraction in cellulase genes is likely adaptive to the shift from phytoplankton-derived to bacteria-based food. It also shows contraction in bacterial recognition gene families, indicative of suppressed immune response to the endosymbiont. The gammaproteobacterium endosymbiont has a reduced genome of 1.03 Mb but retains complete pathways for sulfur oxidation, carbon fixation, and biosynthesis of 20 common amino acids, indicating the host's high dependence on the symbiont for nutrition. Overall, the host-symbiont genomes show not only tight metabolic complementarity but also distinct signatures of coevolution allowing the vesicomyids to thrive in chemosynthesis-based ecosystems.
引用
收藏
页码:502 / 518
页数:17
相关论文
共 50 条
  • [41] A New Species of Natsushima (Annelida: Chrysopetalidae) Living in the Mantle Cavity of a Deep-Sea Solemyid Clam
    Hui, Fan
    Lin, Yi-Tao
    Perez, Maeva
    Qiu, Jian-Wen
    Sun, Yanan
    ZOOLOGICAL STUDIES, 2024, 63
  • [42] Cold-adapted Features of Arginine Kinase from the Deep-sea Clam Calyptogena kaikoi
    Tomohiko Suzuki
    Kentaro Yamamoto
    Hiroshi Tada
    Kouji Uda
    Marine Biotechnology, 2012, 14 : 294 - 303
  • [43] GENOME SIZES OF TELEOSTEAN FISHES - INCREASES IN SOME DEEP-SEA SPECIIES
    EBELING, AW
    ATKIN, NB
    SETZER, PY
    AMERICAN NATURALIST, 1971, 105 (946): : 549 - +
  • [44] Multiple introns in a deep-sea Annelid (Decemunciger: Ampharetidae) mitochondrial genome
    Angelo F. Bernardino
    Yuanning Li
    Craig R. Smith
    Kenneth M. Halanych
    Scientific Reports, 7
  • [45] The mitochondrial genome of the deep-sea limpet Bathyacmaea nipponica (Patellogastropoda: Pectinodontidae)
    Sun, Jin
    Liu, Yaping
    Xu, Ting
    Zhang, Yanjie
    Chen, Chong
    Qiu, Jian-Wen
    Qian, Pei-Yuan
    MITOCHONDRIAL DNA PART B-RESOURCES, 2019, 4 (02): : 3175 - 3176
  • [46] (Meta)genome enabled insights into chemolithoautotrophy at deep-sea hydrothermal vents
    Sievert, Stefan M.
    Taylor, Craig D.
    Schuster, Stephan C.
    Gulmann, Lara K.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A1221 - A1221
  • [47] The mitochondrial genome of the deep-sea snail Provanna sp (Gastropoda: Provannidae)
    Xu, Ting
    Sun, Jin
    Chen, Chong
    Qian, Pei-Yuan
    Qiu, Jian-Wen
    MITOCHONDRIAL DNA PART A, 2016, 27 (06) : 4026 - 4027
  • [48] Efficient Continuous System Integration and Validation for Deep-Sea Robotics Applications
    Fromm, Tobias
    Mueller, Christian A.
    Pfingsthorn, Max
    Birk, Andreas
    Di Lillo, Paolo
    OCEANS 2017 - ABERDEEN, 2017,
  • [49] CHEMICAL AND MINERALOGICAL CHARACTERISTICS OF DEEP-SEA ZEOLITE HOST SEDIMENTS - GENETIC IMPLICATIONS
    STONECIPHER, SA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (12): : 1151 - 1151
  • [50] Surfing the vegetal pole in a small population: extracellular vertical transmission of an 'intracellular' deep-sea clam symbiont
    Ikuta, Tetsuro
    Igawa, Kanae
    Tame, Akihiro
    Kuroiwa, Tsuneyoshi
    Kuroiwa, Haruko
    Aoki, Yui
    Takaki, Yoshihiro
    Nagai, Yukiko
    Ozawa, Genki
    Yamamoto, Masahiro
    Deguchi, Ryusaku
    Fujikura, Katsunori
    Maruyama, Tadashi
    Yoshida, Takao
    ROYAL SOCIETY OPEN SCIENCE, 2016, 3 (05):