Optimal Control Problem for Nonstationary Schrodinger Equation

被引:7
|
作者
Yildiz, Bunyamin [1 ]
Kilicoglu, Oguz [1 ]
Yagubov, G. [1 ]
机构
[1] Mustafa Kemal Univ, Fac Arts & Sci, Dept Math, Antakya, Turkey
关键词
Schrodinger equation; optimal control problem; variational problem;
D O I
10.1002/num.20395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study we investigate an optimal control problem for the nonstationary Schrodinger equation; the questions needed to correctly identify the optimal control problem were answered, and the existence and uniqueness of the solution and the necessary and sufficient conditions for the solution were investigated. We consider the initial situation as control for the controlled system. (C) 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 1195-1203, 2009
引用
收藏
页码:1195 / 1203
页数:9
相关论文
共 50 条
  • [21] Optimal bilinear control of an abstract Schrodinger equation
    Ito, Kazufumi
    Kunisch, Karl
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) : 274 - 287
  • [22] SEPARATION OF VARIABLES IN A NONSTATIONARY SCHRODINGER EQUATION
    SHAPOVALOV, VN
    SUKHOMLIN, NB
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1974, (12): : 100 - 105
  • [23] Exact solutions of the nonstationary Schrodinger equation
    Velicheva, EP
    Suz'ko, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 115 (03) : 687 - 693
  • [24] Asymptotics of Solution to the Nonstationary Schrodinger Equation
    Omuraliev, Asan
    Kyzy, Peil Esengul
    FILOMAT, 2019, 33 (05) : 1361 - 1368
  • [25] NECESSARY OPTIMALITY CONDITION IN AN OPTIMAL CONTROL PROBLEM FOR SCHRODINGER EQUATION WITH PURE IMAGINARY COEFFICIENT IN THE NONLINEAR PART OF THIS EQUATION
    Mahmudov, Nurali M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2008, 28 (36): : 43 - 50
  • [26] Numerical algorithm for solving a nonstationary problem of optimal control
    Grigorenko, N. L.
    Kamzolkin, D. V.
    Luk'yanova, L. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (01): : 53 - 59
  • [27] A numerical algorithm for solving a nonstationary problem of optimal control
    N. L. Grigorenko
    D. V. Kamzolkin
    L. N. Luk’yanova
    Proceedings of the Steklov Institute of Mathematics, 2011, 275 : 49 - 56
  • [28] A numerical algorithm for solving a nonstationary problem of optimal control
    Grigorenko, N. L.
    Kamzolkin, D. V.
    Luk'yanova, L. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 275 : 49 - 56
  • [29] Finite Difference Method for an Optimal Control Problem for a Nonlinear Time-dependent Schrodinger Equation
    Aksoy, Nigar Yildirim
    Dinh Nho Hao
    Yagub, Gabil
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (06) : 799 - 817
  • [30] ESTIMATION OF SPEED OF CONVERGENCE DIFFERENCE APPROXIMATIONS ON FUNCTIONAL IN OPTIMAL CONTROL PROBLEM FOR LINEAR SCHRODINGER EQUATION
    Mahmudov, N. M.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2010, (06): : 54 - 65