The Lorentz transformations and one observation in the perspective of fractional calculus

被引:2
|
作者
Cao Labora, Daniel [1 ]
Lopes, Antonio M. [2 ]
Tenreiro Machado, J. A. [3 ]
机构
[1] Univ Santiago de Compostela, Inst Math IMAT, Fac Math, Dept Stat Math Anal & Optimizat, Rua Lope Gomez de Marzoa S-N, Santiago De Compostela 15782, Spain
[2] Univ Porto, UISPA LAETA INEGI, Fac Engn, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[3] Polytech Porto, Inst Engn, Rua Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
关键词
Special Relativity; Lorentz transformation; Fractional Calculus;
D O I
10.1016/j.cnsns.2019.104855
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lorentz transformations are a key element in the Special Relativity Theory. Their deduction is a consequence of three physical principles, namely, relativity, homogeneity and isotropy, although this issue is commonly omitted. In the first part of the paper, we provide a rigorous mathematical deduction for the formula of Lorentz transformations, including a generalization for accelerated frames. In a second part, we establish a relationship between the formulations in the perspective of integer and Fractional Calculus. We examine when a magnitude (measured as an integral from the point of view of one observer) can be computed as a fractional integral from the point of view of the other observer. Finally, we compute the velocity in a relativistic travel from the solution of a given fractional integral equation. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] IMPROPER LORENTZ TRANSFORMATIONS
    MCLENNAN, JA
    PHYSICAL REVIEW, 1958, 109 (03): : 986 - 989
  • [32] CHARACTERIZATION OF LORENTZ TRANSFORMATIONS
    LENARD, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (01) : 157 - 157
  • [33] Criticism of the Lorentz transformations
    Wu, Jingshown
    Tsao, Hen-Wai
    Huang, Yen-Ru
    PHYSICS ESSAYS, 2023, 36 (04) : 372 - 376
  • [34] On entanglement and Lorentz transformations
    Alsing, PM
    Milburn, GJ
    QUANTUM INFORMATION & COMPUTATION, 2002, 2 (06) : 487 - 512
  • [35] INTEGRAL LORENTZ TRANSFORMATIONS
    COXETER, HSM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (04) : 348 - 348
  • [36] INTERPRETATION OF LORENTZ TRANSFORMATIONS
    NUTHAKKI
    PURNA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (05): : 768 - 768
  • [37] On entanglement and lorentz transformations
    Alsing, Paul M.
    Milburn, Gerard J.
    Quantum Information and Computation, 2002, 2 (06): : 487 - 512
  • [38] VECTOR LORENTZ TRANSFORMATIONS
    CUSHING, JT
    AMERICAN JOURNAL OF PHYSICS, 1967, 35 (09) : 858 - &
  • [39] TACHYONS AND LORENTZ TRANSFORMATIONS
    RECAMI, E
    MIGNANI, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (05): : 688 - &
  • [40] CHARACTERIZATION OF LORENTZ TRANSFORMATIONS
    KUZMINYKH, AV
    DOKLADY AKADEMII NAUK SSSR, 1975, 225 (06): : 1260 - 1262