Novel diterpenoid-type activators of the Keap1/Nrf2/ARE signaling pathway and their regulation of redox homeostasis

被引:23
|
作者
Li, Ai-Ling [1 ]
Shen, Tao [1 ]
Wan, Tian [1 ]
Zhou, Ming-Xing [1 ]
Wang, Bin [1 ]
Song, Jin-Tong [1 ]
Zhang, Peng-Liang [1 ]
Wang, Xiao-Ling [2 ]
Ren, Dong-Mei [1 ]
Lou, Hong-Xiang [1 ]
Wang, Xiao-Ning [1 ]
机构
[1] Shandong Univ, Sch Pharmaceut Sci, Key Lab Chem Biol MOE, 44 Wenhua Xi Rd, Jinan 250012, Shandong, Peoples R China
[2] Shandong Univ, Hosp 2, 247 Bei Yuan St, Jinan 250033, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Diterpenoid; Nrf2; Oxidative stress; Sphaeropsidin A; PROTEIN-PROTEIN INTERACTION; HEME OXYGENASE-1 EXPRESSION; OXIDATIVE STRESS; PEPTIDE INHIBITORS; NRF2; LUNG; PHOSPHORYLATION; CARCINOGENESIS; MECHANISMS; TOXICITY;
D O I
10.1016/j.freeradbiomed.2019.06.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oxidative stress is involved in the onset and progression of many human diseases. Activators of the Keap1/Nrf2/ARE pathway effectively inhibit the progression of oxidative stress-induced diseases. Herein, a small library of diterpenoids was established by means of phytochemical isolation, and chemical modification on naturally occurring molecules. The diterpenoids were subjected to a NAD(P)H: quinone reductase (QR) assay to evaluate its potential inhibition against oxidative stress. Sixteen diterpenoids were found to be novel potential activators of Nrf2-mediated defensive response. Of which, an isopimarane-type diterpenoid, sphaeropsidin A (SA), was identified as a potent activator of the Keap1/Nrf2/ARE pathway, and displayed approximately 5-folds potency than that of sulforaphane (SF). SA activated Nrf2 and its downstream cytoprotective genes through enhancing the stabilization of Nrf2 in a process involving PI3K, PKC, and PERK, as well as potentially interrupting Nrf2-Keap1 protein-protein interaction. In addition, SA conferred protection against sodium arsenite [As(III)]- and cigarette smoke extract (CSE)-induced redox imbalance and cytotoxicity in human lung epithelial cells, as wells as inhibited metronidazole (MTZ)-induced oxidative insult in Tg (krt4: NTR-hKikGR)(cy17) transgenic zebrafish and lipopolysaccharide (LPS)-induced oxidative damage in wild-type AB zebrafish. These results imply that SA is a lead compound for therapeutic agent against oxidative stress-induced diseases, and diterpenoid is a good resource for discovering drug candidates and leads of antioxidant therapy.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 50 条
  • [11] Mechanism of the Nrf2/Keap1/ARE signaling system
    Tkachev, V. O.
    Menshchikova, E. B.
    Zenkov, N. K.
    BIOCHEMISTRY-MOSCOW, 2011, 76 (04) : 407 - 422
  • [12] The cytoprotective role of the Keap1–Nrf2 pathway
    Liam Baird
    Albena T. Dinkova-Kostova
    Archives of Toxicology, 2011, 85 : 241 - 272
  • [13] The Keap1/Nrf2 Signaling Pathway in the Thyroid-2020 Update
    Thanas, Christina
    Ziros, Panos G.
    Chartoumpekis, Dionysios V.
    Renaud, Cedric O.
    Sykiotis, Gerasimos P.
    ANTIOXIDANTS, 2020, 9 (11) : 1 - 14
  • [14] Cellular Modulators of the NRF2/KEAP1 Signaling Pathway in Prostate Cancer
    Tossetta, Giovanni
    Fantone, Sonia
    Marzioni, Daniela
    Mazzucchelli, Roberta
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (07):
  • [15] Modulation of NRF2/KEAP1 Signaling in Preeclampsia
    Tossetta, Giovanni
    Fantone, Sonia
    Piani, Federica
    Crescimanno, Caterina
    Ciavattini, Andrea
    Giannubilo, Stefano Raffaele
    Marzioni, Daniela
    CELLS, 2023, 12 (11)
  • [16] TARGETING THE Keap1/Nrf2 PATHWAY FOR CHEMOPROTECTION
    Dinkova-Kostova, Albena
    FREE RADICAL BIOLOGY AND MEDICINE, 2014, 76 : S5 - S5
  • [17] Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals
    Bhattacharjee, Shamee
    Dashwood, Roderick H.
    ANTIOXIDANTS, 2020, 9 (09) : 1 - 22
  • [18] Role and Mechanism of Keap1/Nrf2 Signaling Pathway in the Regulation of Autophagy in Alleviating Pulmonary Fibrosis
    Dong, Zhaoxing
    Yin, E. Gao
    Yang, Meijuan
    Zhao, Xiaoyuan
    Li, Jing
    Lei, Wen
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [19] Role and Mechanism of Keap1/Nrf2 Signaling Pathway in the Regulation of Autophagy in Alleviating Pulmonary Fibrosis
    Dong, Zhaoxing
    Yin, E. Gao
    Yang, Meijuan
    Zhao, Xiaoyuan
    Li, Jing
    Lei, Wen
    Computational Intelligence and Neuroscience, 2022, 2022
  • [20] Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target
    Zenkov, N. K.
    Menshchikova, E. B.
    Tkachev, V. O.
    BIOCHEMISTRY-MOSCOW, 2013, 78 (01) : 19 - 36