Bifurcation between Superstable Periodic Orbits and Chaos in a Simple Spiking Circuit

被引:0
|
作者
Kawai, Yuji [1 ]
Saito, Toshimichi [1 ]
机构
[1] Hosei Univ, EE Dept, Tokyo 1840002, Japan
关键词
OSCILLATORS; SYNCHRONIZATION; INPUT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies typical nonlinear dynamics of Spiking circuit including two capacitors. Applying impulsive switching depending on both state and time, the circuit can exhibit rich chaotic/periodic phenomena. We pay special attention to superstable periodic orbits and related bifurcation phenomena. The circuit dynamics can be simplified into a piecewise linear one-dimensional return map that enables us to analyze basic bifurcation phenomena precisely.
引用
收藏
页码:844 / 850
页数:7
相关论文
共 50 条
  • [31] Stability Analysis of Periodic Orbits in Digital Spiking Neurons
    Hamaguchi, Tomoki
    Yamaoka, Kei
    Saito, Toshimichi
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 334 - 341
  • [32] Periodic orbits in Hamiltonian chaos of the annular billiard
    Gouesbet, G
    Meunier-Guttin-Cluzel, S
    Grehan, G
    PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 016212
  • [33] Exact periodic orbits and chaos in polynomial potentials
    Caranicolas, ND
    ASTROPHYSICS AND SPACE SCIENCE, 2000, 271 (04) : 341 - 352
  • [34] ON CONTROL OF CHAOS - HIGHER PERIODIC-ORBITS
    PASKOTA, M
    MEES, AI
    TEO, KL
    DYNAMICS AND CONTROL, 1995, 5 (04) : 365 - 387
  • [35] THE BIFURCATION OF HOMOCLINIC AND PERIODIC-ORBITS FROM 2 HETEROCLINIC ORBITS
    CHOW, SN
    DENG, B
    TERMAN, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) : 179 - 204
  • [36] Chaos, order statistics and unstable periodic orbits
    Valsakumar, MC
    Satyanarayana, SVM
    Kanmani, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (40): : 6939 - 6947
  • [37] Reducing or enhancing chaos using periodic orbits
    Bachelard, R.
    Chandre, C.
    Leoncini, X.
    CHAOS, 2006, 16 (02)
  • [38] Unstable periodic orbits and noise in chaos computing
    Kia, Behnam
    Dari, Anna
    Ditto, William L.
    Spano, Mark L.
    CHAOS, 2011, 21 (04)
  • [39] Exact Periodic Orbits and Chaos in Polynomial Potentials
    N.D. Caranicolas
    Astrophysics and Space Science, 2000, 271 : 341 - 352
  • [40] Bifurcation routes to chaos of 2-coupled oscillators and stabilization of unstable periodic orbits embedded in the chaotic attractor
    Endo, T
    Hasegawa, A
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 237 - 240