Croconaine nanoparticles with enhanced tumor accumulation for multimodality cancer theranostics

被引:77
|
作者
Tang, Longguang [1 ,2 ]
Zhang, Fuwu [3 ]
Yu, Fei [1 ,2 ]
Sun, Wenjing [1 ,2 ]
Song, Menglin [1 ,2 ]
Chen, Xiaoyuan [3 ]
Zhang, Xianzhong [1 ,2 ]
Sun, Xiaolian [1 ,2 ]
机构
[1] Xiamen Univ, State Key Lab Mol Vaccinol & Mol Diagnost, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Sch Publ Hlth, Ctr Mol Imaging & Translat Med, Xiamen 361005, Peoples R China
[3] NIBIB, LOMIN, NIH, Bethesda, MD 20892 USA
基金
中国国家自然科学基金;
关键词
Controlled assembly; Molecular nanoprobe; EPR effect; Multimodality imaging; Photothermal therapy; EFFECTIVE PHOTOTHERMAL AGENT; NANOMEDICINE; THERAPY; NANOCOMPOSITES; PERMEABILITY; CROCONIUM; MICELLE; SAFE; DYE;
D O I
10.1016/j.biomaterials.2017.03.009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A novel nanoparticle self-assembled by polyethylene glycol (PEG) modified croconaine dye (CR780) is presented for photoacoustic (PA)/near-infrared (NIR) fluorescence imaging-guided photothermal therapy (PTT). The simple PEGylation made CR780 amphiphilic, and led to their self-assembly into well-defined and uniform nanostructures with size tunable by controlling the assembly conditions. The CR780-PEG5K not only displayed the strength of small molecules (including rapid distribution to different organs, fast renal clearance and minimal accumulation to normal tissues), but also demonstrated the advantages of nanomaterials (including high physiological stability, multimodal theranostic ability, high tumor accumulation and retention). These facilely synthesized molecular nanoprobes showed great clinical translation potential as a versatile theranostic agent. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [31] Paclitaxel-Induced Ultrasmall Gallic Acid-Fe@BSA Self-Assembly with Enhanced MRI Performance and Tumor Accumulation for Cancer Theranostics
    An, Lu
    Yan, Chenglin
    Mu, Xueling
    Tao, Cheng
    Tian, Qiwei
    Lin, Jiaomin
    Yang, Shiping
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (34) : 28483 - 28493
  • [32] Janus nanoparticles in cancer diagnosis, therapy and theranostics
    Zhang, Yifan
    Huang, Kai
    Lin, Jing
    Huang, Peng
    BIOMATERIALS SCIENCE, 2019, 7 (04) : 1262 - 1275
  • [33] The application of nanoparticles in diagnosis and theranostics of gastric cancer
    Li, Rutian
    Liu, Baorui
    Gao, Jiahui
    CANCER LETTERS, 2017, 386 : 123 - 130
  • [34] Iron Oxide Nanoparticles for Breast Cancer Theranostics
    Shakil, Md Salman
    Hasan, Md Ashraful
    Sarker, Satya Ranjan
    CURRENT DRUG METABOLISM, 2019, 20 (06) : 446 - 456
  • [35] Lipoprotein-Inspired Nanoparticles for Cancer Theranostics
    Ng, Kenneth K.
    Lovell, Jonathan F.
    Zheng, Gang
    ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (10) : 1105 - 1113
  • [36] Multifunctional porous silicon nanoparticles for cancer theranostics
    Wang, Chang-Fang
    Sarparanta, Mirkka P.
    Makila, Ermei M.
    Hyvonen, Maija L. K.
    Laakkonen, Pirjo M.
    Salonen, Jamb J.
    Hirvonen, Jouni T.
    Airaksinen, Anu J.
    Santos, Helder A.
    BIOMATERIALS, 2015, 48 : 108 - 118
  • [37] Biodegradable nanoparticles as theranostics of ovarian cancer: an overview
    Chaurasiya, Swati
    Mishra, Vijay
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2018, 70 (04) : 435 - 449
  • [38] Gold nanoparticles enlighten the future of cancer theranostics
    Guo, Jianfeng
    Rahme, Kamil
    He, Yan
    Li, Lin-Lin
    Holmes, Justin D.
    O'Driscoll, Caitriona M.
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2017, 12 : 6131 - 6152
  • [39] Research perspectives: gold nanoparticles in cancer theranostics
    Li, Junjie
    Gupta, Sanjay
    Li, Chun
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2013, 3 (06) : 284 - 291
  • [40] Persistent luminescence nanoparticles for cancer theranostics application
    Liu, Nian
    Chen, Xiao
    Sun, Xia
    Sun, Xiaolian
    Shi, Junpeng
    JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)