A Review on Biomedical Applications of Single-Walled Carbon Nanotubes

被引:151
|
作者
Liang, F. [1 ,2 ]
Chen, B. [3 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Arizona State Univ, Biodesign Inst, Tempe, AZ 85281 USA
[3] Univ Calif San Francisco, Dept Biopharmaceut Sci & Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
Carbon nanotubes; CNTs dispersion; biocompatibility; drug delivery; molecular imaging; ELECTRONIC-STRUCTURE; IN-VIVO; PARTICLE TRACKING; INTRACELLULAR DELIVERY; INDIVIDUAL NANOTUBES; PULMONARY TOXICITY; LARGE POPULATIONS; N; M SELECTIVITY; DRUG-DELIVERY; FUNCTIONALIZATION;
D O I
10.2174/092986710789957742
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-walled carbon nanotubes (SWNTs), a member of the carbon family, are the one-dimensional analogues of zero-dimensional fullerene molecules with unique structural and electronic properties. Since the discovery of SWNTs, they have been extensively studied for biomedical applications. In biological media SWNTs have unique near-infrared intrinsic fluorescence, inherent Raman spectroscopy and photoacoustic signal associated with the graphene in SWNTs which makes them ideal for noninvasive and high sensitivity detection. SWNTs have been broadly investigated as imaging agents for the evaluation of tumor targeting and localization of SWNTs in vitro and in vivo. Rational functionalization can also endow SWNTs with desired properties for biomedical applications. Functionalized SWNTs with significantly reduced toxicity have been employed as carriers to deliver various anticancer drugs, proteins and nucleic acids to the diseased tissues specifically and maximize the bioavailability of the drugs by improving solubility and increasing circulation time. This manuscript will highlight the recent employment of SWNTs in the field of nanomedicine and bioimaging, and also outline the challenges and future opportunities for biomedical applications of SWNTs.
引用
收藏
页码:10 / 24
页数:15
相关论文
共 50 条
  • [31] Cutting single-walled carbon nanotubes
    Ziegler, KJ
    Gu, ZN
    Shaver, J
    Chen, ZY
    Flor, EL
    Schmidt, DJ
    Chan, C
    Hauge, RH
    Smalley, RE
    NANOTECHNOLOGY, 2005, 16 (07) : S539 - S544
  • [32] Antioxidant single-walled carbon nanotubes
    Departments of Chemistry and Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005
    不详
    J. Am. Chem. Soc., 2009, 11 (X3934-3941):
  • [33] Photoconductivity of single-walled carbon nanotubes
    Fujiwara, A
    Matsuoka, Y
    Suematsu, H
    Ogawa, N
    Miyano, K
    Kataura, H
    Maniwa, Y
    Suzuki, S
    Achiba, Y
    NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 189 - 192
  • [34] Silylation of single-walled carbon nanotubes
    Hemraj-Benny, Tirandai
    Wong, Stanislaus S.
    CHEMISTRY OF MATERIALS, 2006, 18 (20) : 4827 - 4839
  • [35] Localization in single-walled carbon nanotubes
    Fuhrer, MS
    Cohen, ML
    Zettl, A
    Crespi, V
    SOLID STATE COMMUNICATIONS, 1999, 109 (02) : 105 - 109
  • [36] Purification of single-walled carbon nanotubes
    Pillai, Sreejarani K.
    Ray, Suprakas Sinha
    Moodley, Mathew
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (09) : 3011 - 3047
  • [37] Functionalization of single-walled carbon nanotubes
    Hirsch, A
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (11) : 1853 - 1859
  • [38] Iodination of single-walled carbon nanotubes
    Coleman, Karl S.
    Chakraborty, Amit K.
    Bailey, Sam R.
    Sloan, Jeremy
    Alexander, Morgan
    CHEMISTRY OF MATERIALS, 2007, 19 (05) : 1076 - 1081
  • [39] Nucleation of single-walled carbon nanotubes
    Fan, X
    Buczko, R
    Puretzky, AA
    Geohegan, DB
    Howe, JY
    Pantelides, ST
    Pennycook, SJ
    PHYSICAL REVIEW LETTERS, 2003, 90 (14)
  • [40] Magnetic impurities in single-walled carbon nanotubes and graphene: a review
    Vejpravova, J.
    Pacakova, B.
    Kalbac, M.
    ANALYST, 2016, 141 (09) : 2639 - 2656