Relating ordinary and fully simple maps via monotone Hurwitz numbers

被引:0
|
作者
Borot, Gaetan [1 ]
Charbonnier, Severin [1 ]
Do, Norman [2 ]
Garcia-Failde, Elba [3 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[3] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2019年 / 26卷 / 03期
基金
澳大利亚研究理事会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A direct relation between the enumeration of ordinary maps and that of fully simple maps first appeared in the work of the first and last authors. The relation is via monotone Hurwitz numbers and was originally proved using Weingarten calculus for matrix integrals. The goal of this paper is to present two independent proofs that are purely combinatorial and generalise in various directions, such as to the setting of stuffed maps and hypermaps. The main motivation to understand the relation between ordinary and fully simple maps is the fact that it could shed light on fundamental, yet still not well-understood, problems in free probability and topological recursion.
引用
收藏
页数:24
相关论文
共 49 条
  • [31] Topological recursion, symplectic duality, and generalized fully simple maps
    Alexandrov, A.
    Bychkov, B.
    Dunin-Barkowski, P.
    Kazarian, M.
    Shadrin, S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 206
  • [32] Periodic points of holomorphic maps via Lefschetz numbers
    Fagella, N
    Llibre, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) : 4711 - 4730
  • [33] Solutions of Integral Nonclassical Ordinary Differential Equations Via Contractor Maps
    Bishop, S. A.
    Eke, K. S.
    Akewe, H.
    Okeke, G. A.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 513 - 519
  • [34] MINIMAL SETS OF PERIODS FOR TORUS MAPS VIA NIELSEN NUMBERS
    ALSEDA, L
    BALDWIN, S
    LLIBRE, J
    SWANSON, R
    SZLENK, W
    PACIFIC JOURNAL OF MATHEMATICS, 1995, 169 (01) : 1 - 32
  • [35] Periods for transversal maps via Lefschetz numbers for periodic points
    Guillamon, A
    Jarque, X
    Llibre, J
    Ortega, J
    Torregrosa, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (12) : 4779 - 4806
  • [36] Relating Balancing Polynomials to Lucas-Balancing Polynomials via Bernoulli Numbers
    Goubi, Mouloud
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (04)
  • [37] b-Monotone Hurwitz Numbers: Virasoro Constraints, BKP Hierarchy, and O(N)-BGW Integral ( vol 2023 , pg 12172 , 2023 )
    Bonzom, Valentin
    Chapuy, Guillaume
    Dolega, Maciej
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (16) : 11711 - 11711
  • [38] On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers
    Tomáš Bajbar
    Oliver Stein
    Mathematische Zeitschrift, 2018, 288 : 915 - 933
  • [39] On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers
    Bajbar, Tomas
    Stein, Oliver
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 915 - 933
  • [40] Spectral Radii and Collatz-Wielandt Numbers for Homogeneous Order-preserving Maps and the Monotone Companion Norm
    Thieme, Horst R.
    ORDERED STRUCTURES AND APPLICATIONS, 2016, : 415 - 467