Effect of through-plane polytetrafluoroethylene distribution in gas diffusion layers on performance of proton exchange membrane fuel cells

被引:44
|
作者
Ito, Hiroshi [1 ]
Iwamura, Takuya [1 ]
Someya, Satoshi [1 ]
Munakata, Tetsuo [1 ]
Nakano, Akihiro [1 ]
Heo, Yun [2 ]
Ishida, Masayoshi [2 ]
Nakajima, Hironori [3 ]
Kitahara, Tatsumi [3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Energy Conservat, 1-2-1 Namiki, Tsukuba, Ibaraki 3058564, Japan
[2] Univ Tsukuba, Dept Engn Mech & Energy, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058573, Japan
[3] Kyushu Univ, Dept Mech Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
基金
日本科学技术振兴机构;
关键词
Proton exchange membrane fuel cell; Gas diffusion layer; PTFE distribution; Water breakthrough pressure; Contact angle; MICRO-POROUS LAYER; HYDROPHOBIC POLYMER CONTENT; COMPOSITE CARBON-BLACK; MICROPOROUS LAYER; WATER DISTRIBUTION; PEMFC; TRANSPORT; BREAKTHROUGH; MANAGEMENT; THICKNESS;
D O I
10.1016/j.jpowsour.2015.12.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This experimental study identifies the effect of through-plane polytetrafluoroethylene (PTFE) distribution in gas diffusion backing (GDB) on the performance of proton exchange membrane fuel cells (PEMFC). PTFE-drying under vacuum pressure created a relatively uniform PTFE distribution in GDB compared to drying under atmospheric pressure. Carbon paper samples with different PTFE distributions due to the difference in drying conditions were prepared and used for the cathode gas diffusion layer (GDL) of PEMFCs. Also investigated is the effect of MPL application on the performance for those samples. The current density (i) - voltage (V) characteristics of these PEMFCs measured under high relative humidity conditions clearly showed that, with or without MPL, the cell using the GDL with PTFE dried under vacuum condition showed better performance than that dried under atmospheric condition. It is suggested that this improved performance is caused by the efficient transport of liquid water through the GDB due to the uniform distribution of PTFE. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 50 条
  • [41] Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells
    Ismail, M. S.
    Damjanovic, T.
    Ingham, D. B.
    Pourkashanian, M.
    Westwood, A.
    JOURNAL OF POWER SOURCES, 2010, 195 (09) : 2700 - 2708
  • [42] Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells
    Ismail, M. S.
    Hughes, K. J.
    Ingham, D. B.
    Ma, L.
    Pourkashanian, M.
    APPLIED ENERGY, 2012, 95 : 50 - 63
  • [43] Effect of porosity distribution on performance of proton exchange membrane fuel cells
    Yin Y.
    Sun F.
    Su D.
    Qin S.
    Nie X.
    Pang B.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (04): : 808 - 816
  • [44] Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell
    Wang, Yulin
    Xu, Haokai
    Zhang, Zhe
    Li, Hua
    Wang, Xiaodong
    APPLIED ENERGY, 2022, 320
  • [45] Optimization of polytetrafluoroethylene content in cathode gas diffusion layer by the evaluation of compression effect on the performance of a proton exchange membrane fuel cell
    Chang, Hao-Ming
    Lin, Chien-Wei
    Chang, Min-Hsing
    Shiu, Huan-Ruei
    Chang, Wen-Chen
    Tsau, Fang-Hei
    JOURNAL OF POWER SOURCES, 2011, 196 (08) : 3773 - 3780
  • [46] PORE STRUCTURE MODELING OF FLOW IN GAS DIFFUSION LAYERS OF PROTON EXCHANGE MEMBRANE FUEL CELLS
    Shi, Zhongying
    Wang, Xia
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1, 2010, : 525 - 531
  • [47] Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells
    El-kharouf, Ahmad
    Mason, Thomas J.
    Brett, Dan J. L.
    Pollet, Bruno G.
    JOURNAL OF POWER SOURCES, 2012, 218 : 393 - 404
  • [48] Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cells
    Straubhaar, B.
    Pauchet, J.
    Prat, M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 891 - 901
  • [49] Pore Structure Modeling of Flow in Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells
    Shi, Z.
    Wang, X.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (02):
  • [50] Wettability characterization of pore networks of gas diffusion layers in proton exchange membrane fuel cells
    Lee, Yongtaek
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (04) : 1959 - 1968