Multi-Objective Instance Weighting-Based Deep Transfer Learning Network for Intelligent Fault Diagnosis

被引:21
|
作者
Lee, Kihoon [1 ]
Han, Soonyoung [1 ]
Pham, Van Huan [1 ]
Cho, Seungyon [1 ]
Choi, Hae-Jin [1 ,2 ]
Lee, Jiwoong [3 ]
Noh, Inwoong [3 ]
Lee, Sang Won [3 ]
机构
[1] Chung Ang Univ, Sch Mech Engn, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Chung Ang Univ, Dept Comp Sci & Engn, 84 Heukseok Ro, Seoul 06974, South Korea
[3] Sungkyunkwan Univ, Sch Mech Engn, 2066 Seobu Ro, Suwon 16419, South Korea
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 05期
关键词
deep learning; fault diagnosis; industrial robot; prognostics and health management (PHM); spot welding; transfer learning; INDUCTION-MOTORS; GEARBOX;
D O I
10.3390/app11052370
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fault diagnosis is a top-priority task for the health management of manufacturing processes. Deep learning-based methods are widely used to secure high fault diagnosis accuracy. Actually, it is difficult and expensive to collect large-scale data in industrial fields. Several prerequisite problems can be solved using transfer learning for fault diagnosis. Data from the source domain that are different but related to the target domain are used to increase the diagnosis performance of the target domain. However, a negative transfer occurs that degrades diagnosis performance due to the transfer when the discrepancy between and within domains is large. A multi-objective instance weighting-based transfer learning network is proposed to solve this problem and successfully applied to fault diagnosis. The proposed method uses a newly devised multi-objective instance weight to deal with practical situations where domain discrepancy is large. It adjusts the influence of the domain data on model training through two theoretically different indicators. Knowledge transfer is performed differentially by sorting instances similar to the target domain in terms of distribution with useful information for the target task. This domain optimization process maximizes the performance of transfer learning. A case study using an industrial robot and spot-welding testbed is conducted to verify the effectiveness of the proposed technique. The performance and applicability of transfer learning in the proposed method are observed in detail through the same case study as the actual industrial field for comparison. The diagnostic accuracy and robustness are high, even when few data are used. Thus, the proposed technique is a promising tool that can be used for successful fault diagnosis.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] Deep Transfer Learning in Mechanical Intelligent Fault Diagnosis: Application and Challenge
    Chenhui Qian
    Junjun Zhu
    Yehu Shen
    Quansheng Jiang
    Qingkui Zhang
    Neural Processing Letters, 2022, 54 : 2509 - 2531
  • [22] Machine Fault Diagnosis Based on Multi-head Deep Learning Network
    Lu, Qidong
    Qin, Yu
    Li, Yingying
    Qin, Zhiliang
    Liu, Xiaowei
    TWELFTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2021, 11719
  • [23] Fault diagnosis of train rotating parts based on multi-objective VMD optimization and ensemble learning
    Jin, Zhenzhen
    He, Deqiang
    Ma, Rui
    Zou, Xueyan
    Chen, Yanjun
    Shan, Sheng
    DIGITAL SIGNAL PROCESSING, 2022, 121
  • [24] Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data
    Guo, Liang
    Lei, Yaguo
    Xing, Saibo
    Yan, Tao
    Li, Naipeng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (09) : 7316 - 7325
  • [25] Deep Learning Based Intelligent Industrial Fault Diagnosis Model
    Surendran, R.
    Khalaf, Osamah Ibrahim
    Romero, Carlos Andres Tavera
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 6323 - 6338
  • [26] Intelligent Planning of UAV Flocks via Transfer Learning and Multi-objective Optimization
    Farooq, Fahad
    Ali, Zain Anwar
    Shafiq, Muhammad
    Israr, Amber
    Hasan, Raza
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025,
  • [27] Cross-machine intelligent fault diagnosis of gearbox based on deep learning and parameter transfer
    Han, Te
    Zhou, Taotao
    Xiang, Yongyong
    Jiang, Dongxiang
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (03):
  • [28] A new intelligent fault diagnosis framework for rotating machinery based on deep transfer reinforcement learning
    Yang, Daoguang
    Karimi, Hamid Reza
    Pawelczyk, Marek
    CONTROL ENGINEERING PRACTICE, 2023, 134
  • [29] Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator
    Irani, Fatemeh Negar
    Soleimani, Mohammadjavad
    Yadegar, Meysam
    Meskin, Nader
    APPLIED ENERGY, 2024, 365
  • [30] Rolling element bearing fault diagnosis based on multi-objective optimized deep auto-encoder
    Chang, Xiaoxin
    Yang, Shaopu
    Li, Shaohua
    Gu, Xiaohui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)