Short-time asymptotic expansions of semilinear evolution equations

被引:1
|
作者
Fahrenwaldt, Matthias A. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Math Stochast, Welfengarten 1, D-30167 Hannover, Germany
关键词
semilinear equations; asymptotic analysis; Banach algebras; backward stochastic differential equations; STOCHASTIC DIFFERENTIAL-EQUATIONS;
D O I
10.1017/S0308210515000372
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an algebraic approach to constructing short-time asymptotic expansions of solutions of a class of abstract semilinear evolution equations. The expansions are typically valid for both the solution of the equation and its gradient. We apply a perturbation approach based on the symbolic calculus of pseudo-differential operators and heat kernel methods. The construction is explicit and can be done to arbitrary order. All results are rigorously formulated in terms of Banach algebras. As an application we obtain a novel approach to finding approximate solutions of Markovian backward stochastic differential equations.
引用
收藏
页码:141 / 167
页数:27
相关论文
共 50 条
  • [31] Asymptotic expansions for degenerate parabolic equations
    Pagliarani, Stefano
    Pascucci, Andrea
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (12) : 1011 - 1016
  • [32] Short-time propagators for nonlinear Fokker-Planck equations
    Donoso, JM
    Salgado, JJ
    Soler, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (20): : 3681 - 3695
  • [33] SHORT-TIME ASYMPTOTICS IN CLASSICAL NONLINEAR-WAVE EQUATIONS
    LIVI, R
    RUFFO, S
    PETTINI, M
    VULPIANI, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1985, 89 (02): : 120 - 130
  • [34] Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term
    Alvarez, F
    Cabot, A
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (03) : 921 - 938
  • [35] Asymptotic behavior and decay rate estimates for a class of semilinear evolution equations of mixed order
    Yassine, Hassan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) : 2309 - 2326
  • [36] Asymptotic behavior and decay rate estimates for a class of semilinear evolution equations of mixed order
    Université Paul Verlaine - Metz, Laboratoire de Mathématiques et Applications de Metz et CNRS, Bât. A, Bureau 133, Ile du Saulcy, 57045 Metz Cedex 1, France
    Nonlinear Anal Theory Methods Appl, 6 (2309-2326):
  • [37] SEMILINEAR EVOLUTION-EQUATIONS
    DESCH, W
    SCHAPPACHER, W
    ZHANG, KP
    HOUSTON JOURNAL OF MATHEMATICS, 1989, 15 (04): : 527 - 552
  • [38] On the asymptotic behavior of the solutions of semilinear nonautonomous equations
    Nguyen Van Minh
    Gaston M. N’guérékata
    Ciprian Preda
    Semigroup Forum, 2013, 87 : 18 - 34
  • [39] Asymptotic behaviour of solutions of semilinear parabolic equations
    Egorov, Yu. V.
    Kondratiev, V. A.
    SBORNIK MATHEMATICS, 2008, 199 (3-4) : 539 - 556
  • [40] ASYMPTOTIC SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS
    KREITH, K
    SWANSON, CA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 98 (01) : 148 - 157