Model Based Modified K-Means Clustering for Microarray Data

被引:6
|
作者
Suresh, R. M. [1 ]
Dinakaran, K. [1 ]
Valarmathie, P. [2 ]
机构
[1] RMK Engn Coll, Dept Comp Sci & Engn, Madras, Tamil Nadu, India
[2] MGR Univ, Dept Comp Sci & Engn, Madras, Tamil Nadu, India
关键词
Microarray techniques; k-means clustering; sum of squares; Gene expression data;
D O I
10.1109/ICIME.2009.53
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large amount of gene expression data obtained from Microarray technologies should be analyzed and interpreted in appropriate manner for the benefit of researchers. Using microarray techniques one can monitor the expressions levels of thousands of genes simultaneously. One challenging problem in gene expression analysis is to define the number of clusters. This can be done by some efficient clustering techniques; the Model Based Modified k-means method introduced in this paper could find the exact number of clusters and overcome the problems in the existing k-means clustering technique. Our experimental results show the efficiency of our method by calculating and comparing the sum of squares with different k values.
引用
收藏
页码:271 / 273
页数:3
相关论文
共 50 条
  • [31] Graph based k-means clustering
    Galluccio, Laurent
    Michel, Olivier
    Comon, Pierre
    Hero, Alfred O., III
    SIGNAL PROCESSING, 2012, 92 (09) : 1970 - 1984
  • [32] Optimized K-Means Clustering Model based on Gap Statistic
    El-Mandouh, Amira M.
    Mahmoud, Hamdi A.
    Abd-Elmegid, Laila A.
    Haggag, Mohamed H.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (01) : 183 - 188
  • [33] Bagged K-means clustering of metabolome data
    Hageman, J. A.
    van den Berg, R. A.
    Westerhuis, J. A.
    Hoefsloot, H. C. J.
    Smilde, A. K.
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2006, 36 (3-4) : 211 - 220
  • [34] K-means Data Clustering with Memristor Networks
    Jeong, YeonJoo
    Lee, Jihang
    Moon, John
    Shin, Jong Hoon
    Lu, Wei D.
    NANO LETTERS, 2018, 18 (07) : 4447 - 4453
  • [35] An Improved K-Means Clustering Algorithm Based on Semantic Model
    Liu, Zhe
    Bao, Jianmin
    Ding, Fei
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING 2018 (ICITEE '18), 2018,
  • [36] k-Means Clustering of Lines for Big Data
    Marom, Yair
    Feldman, Dan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [37] K-Means Extensions for Clustering Categorical Data
    Alwersh, Mohammed
    Kovacs, Laszlo
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 492 - 507
  • [38] New k-Means data clustering approach
    College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China
    不详
    不详
    J. Comput. Inf. Syst., 2008, 2 (565-570):
  • [39] K-means*: Clustering by gradual data transformation
    Malinen, Mikko I.
    Mariescu-Istodor, Radu
    Franti, Pasi
    PATTERN RECOGNITION, 2014, 47 (10) : 3376 - 3386
  • [40] Data decomposition for parallel K-means clustering
    Gursoy, A
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2004, 3019 : 241 - 248