Determination of CH4, C2H6 and CO2 adsorption in shale kerogens coupling sorption-induced swelling

被引:48
|
作者
Yu, Xinran [1 ]
Li, Jing [1 ,2 ]
Chen, Zhangxin [1 ,2 ]
Wu, Keliu [3 ]
Zhang, Linyang [1 ]
Yang, Sheng [1 ]
Hui, Gang [1 ]
Yang, Min [1 ]
机构
[1] Univ Calgary, Chem & Petr Engn, Calgary, AB T2N1N4, Canada
[2] China Univ Petr, Key Lab Petr Engn, Minist Educ, Beijing 102249, Peoples R China
[3] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
基金
加拿大自然科学与工程研究理事会; 北京市自然科学基金;
关键词
Kerogen swelling; Methane; Ethane; Carbon dioxide; Adsorption;
D O I
10.1016/j.cej.2020.127690
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gas adsorption can induce kerogen swelling with changes in pore volumes. In this study, hybrid Grand Canonical Monte Carlo/Molecular Dynamics simulations are conducted to investigate gas adsorption in kerogen and the corresponding sorption-induced swelling. A unified relationship between volumetric strain and an absolute adsorption amount is developed for different adsorbates. A theoretical model for calculating excess adsorption isotherms coupling swelling is proposed. Results show that (i) steep increases in C2H6 and CO2 adsorption isotherms at lower pressure indicate stronger affinities of C2H6 and CO2 than CH4; however, a larger size of C2H6 results in smaller accessible pore volumes and smaller maximum absolute adsorption amounts than CH4 and CO2. (ii) A linear relationship between volumetric strain and an adsorption amount is shown for CH4, C2H6 and CO2, separately. The volumetric strain caused by per unit of the absolute adsorption amount for C2H6 is the greatest because C2H6 with greater diameters has larger contact areas with pore walls for the same adsorbed amount. The maximum swelling upon CO2 adsorption is the largest (CO2 > CH4 > C2H6) due to its greatest absolute adsorption amount. (iii) Excess adsorption isotherms generated by our model are consistent with excess adsorption data calculated by variable pore volumes, which shows a large discrepancy compared to that determined using constant volumes, especially at high pressures. The difference between the fraction of free CH4 in our model and that calculated by using a constant volume is up to 23.2% at 323 K, 40 MPa. Therefore, this theoretical model can accurately determine free and adsorbed gas amounts in shale, further influencing prediction of hydrocarbon production and CO2 sequestration.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Products of reaction Rb with C2H6 or CH4
    Tolstov, G. I.
    Naumkin, S. N.
    Torbin, A. P.
    Mebel, A. M.
    Heaven, M. C.
    Azyazov, V. N.
    2016 INTERNATIONAL CONFERENCE LASER OPTICS (LO), 2016,
  • [22] A Microporous Metal-Organic Framework for Efficient C2H2/CO2 and C2H6/CH4 Separation
    Li, Hengbo
    Ji, Zhenyu
    Chen, Cheng
    Di, Zhengyi
    Liu, Yongsheng
    Wu, Mingyan
    CRYSTAL GROWTH & DESIGN, 2021, 21 (04) : 2277 - 2282
  • [23] Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter
    Sada, PV
    Bjoraker, GL
    Jennings, DE
    McCabe, GH
    Romani, PN
    ICARUS, 1998, 136 (02) : 192 - 201
  • [24] A review of gas adsorption on shale and the influencing factors of CH4 and CO2 adsorption
    Mudoi, Manash Protim
    Sharma, Pushpa
    Khichi, Abhimanyu Singh
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217
  • [25] Molecular interactions of CO2 and CH4 and their adsorption behaviour in kerogens with different grades of maturity
    Yuan, Shan
    Gang, Hong-Ze
    Liu, Yi-Fan
    Zhou, Lei
    Irfan, Muhammad
    Yang, Shi-Zhong
    Mu, Bo-Zhong
    MOLECULAR SIMULATION, 2023, 49 (06) : 536 - 550
  • [26] Experimental Investigation of the Impact of CO, C2H6, and H2 on the Explosion Characteristics of CH4
    Wang, Hua
    Gu, Sai
    Chen, Tao
    ACS OMEGA, 2020, 5 (38): : 24684 - 24692
  • [27] Effect of supercritical CO2 extraction on CO2/CH4 competitive adsorption in Yanchang shale
    Qin, Chao
    Jiang, Yongdong
    Zhou, Junping
    Song, Xiao
    Liu, Zhengjie
    Li, Dong
    Zhou, Feng
    Xie, Yingliang
    Xie, Chenglong
    Jiang, Yongdong (jiangyd1015@163.com), 1600, Elsevier B.V. (412):
  • [28] Effect of supercritical CO2 extraction on CO2/CH4 competitive adsorption in Yanchang shale
    Qin, Chao
    Jiang, Yongdong
    Zhou, Junping
    Song, Xiao
    Liu, Zhengjie
    Li, Dong
    Zhou, Feng
    Xie, Yingliang
    Xie, Chenglong
    CHEMICAL ENGINEERING JOURNAL, 2021, 412
  • [29] Molecule Simulation of CH4/CO2 Competitive Adsorption and CO2 Storage in Shale Montmorillonite
    Hou, Dali
    Gong, Fengming
    Tang, Hongming
    Guo, Jianchun
    Qiang, Xianyu
    Sun, Lei
    ATMOSPHERE, 2022, 13 (10)
  • [30] Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale
    Duan, Shuo
    Gu, Min
    Du, Xidong
    Xian, Xuefu
    ENERGY & FUELS, 2016, 30 (03) : 2248 - 2256